
J
H
E
P
0
2
(
2
0
0
7
)
0
7
3

Published by Institute of Physics Publishing for SISSA

Received: December 4, 2006

Accepted: January 29, 2007

Published: February 22, 2007

Non-anomalous ‘Ward’ identities to supplement

large-N multi-matrix loop equations for correlations

Levent Akant

Feza Gürsey Institute,

Emek Mah.Rasathane Yolu No:68, 34684, Çengelköy, Istanbul, Turkey
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Abstract: This work concerns single-trace correlations of Euclidean multi-matrix models.

In the large-N limit we show that Schwinger-Dyson equations (SDE) imply loop equations

(LE) and non-anomalous Ward identities (WI). LE are associated to generic infinitesimal

changes of matrix variables (vector fields). WI correspond to vector fields preserving mea-

sure and action. The former are analogous to Makeenko-Migdal equations and the latter to

Slavnov-Taylor identities. LE correspond to leading large-N SDE. WI correspond to 1/N2

suppressed SDE. But they become leading equations since LE for non-anomalous vector

fields are vacuous. We show that symmetries at N = ∞ persist at finite N , preventing

mixing with multi-trace correlations. For 1 matrix, there are no non-anomalous infinitesi-

mal symmetries. For 2 or more matrices, measure preserving vector fields form an infinite

dimensional graded Lie algebra, and non-anomalous action preserving ones a subalgebra.

For Gaussian, Chern-Simons and Yang-Mills models we identify up to cubic non-anomalous

vector fields, though they can be arbitrarily non-linear. WI are homogeneous linear equa-

tions. We use them with the LE to determine some correlations of these models. WI

alleviate the underdeterminacy of LE. Non-anomalous symmetries give a naturalness-type

explanation for why several linear combinations of correlations in these models vanish.
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1. Introduction

Hermitian multi-matrix models are quantum systems where the dynamical variables are a

set of N × N hermitian matrices. Observables must be basis independent, i.e. invariant

under the global adjoint action of U(N) on the matrices. Expectation values of observables

are determined by an average over all matrix elements with respect to a Boltzmann weight

specified by an action. Matrix models simplify in ’t Hooft’s large-N limit, since fluctuations

in U(N)-invariant observables are small in this limit.

Multi-matrix models are simplified models for the dynamics of gauge fields in Yang-

Mills theory. It is a fundamental and challenging problem to determine the free energy

and correlation functions of multi-matrix models, and elucidate the mathematical frame-

work needed to study them. Multi-matrix models are much harder to understand than

single-matrix models, but also have a much richer structure. Large-N matrix models and

more generally large-N gauge theories have been studied ever since their relevance as an

approximation to the theory of strong interactions was pointed out by ’t Hooft in the mid

1970s [1 – 3]. Important progress in obtaining the loop equations of Yang-Mills theory and

study of the large-N limit was made in the late 1970s and early 1980s by Migdal and Ma-

keenko [4], Cvitanovic [5], Yaffe [6], Jevicki and Sakita [7] and others [8]. The subject was

applied to random surface theory, 2d string theory and the matrix approach to M-theory in

the 1990s. Meanwhile, there has been a steady stream of developments in matrix models of

which we cite a few examples. These include their connections to non-commutative prob-

ability theory [9 – 14], the study of multi-matrix symmetry algebras and their connections

to spin chains [15, 16], exact solutions [17] and their relation to CFT [18] and algebraic

geometry and detailed studies of the loop equations [19, 20]. Much of the existing liter-

ature deals with 1-matrix models or exact solutions for specific observables of carefully

chosen multi-matrix models. We hope to complement this by developing a framework and

methods that apply to general multi-matrix models.

Throughout physics, we exploit symmetries to simplify dynamical equations by reduc-

ing the number of unknowns. The quantum dynamical equations of a large-N multi-matrix

model are the loop equations1 for single-trace correlations. These correlations are analogs

of gluon and ghost correlation functions of Yang-Mills theory. Here, we develop a gen-

eral framework to find non-anomalous infinitesimal symmetries of multi-matrix models

(i.e. those that preserve both action and measure). These symmetries are used to infer

Ward identities, which supplement the loop equations to determine correlations. These

1The name loop equations is used because these equations are analogous to the Makeenko-Migdal equa-

tions of Yang-Mills theory, which were formulated for the Wilson loops. The word loop has nothing to

do with loops in Feynman diagrams. Another name for these equations is factorized Schwinger-Dyson

equations.
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non-anomalous symmetries and Ward identities can be regarded as finite dimensional ana-

logues of BRST invariance and Slavnov-Taylor identities of Yang-Mills theory. The ideas

are illustrated with examples from 2 and 3-matrix models.

To motivate this work, we explain how we came to think along these lines. We were

trying to solve the loop equations (LE) to determine large-N single trace correlations of

some specific multi-matrix models [20]. Single-trace correlations are the basic objects of

interest, since multi-trace correlations factorize into products of single-trace ones in the

large-N limit. The LE state the invariance of the partition function under infinitesimal

but non-linear changes of integration variables, in the large-N limit. They relate a change

in action to a change in measure. Such infinitesimal changes of integration variables can be

regarded as vector fields. A priori, there is one LE for each such vector field. In many non-

gaussian cases, we found the LE were underdetermined. Moreover, this underdeterminacy

seemed related to the fact that for several changes of variable, the LE were vacuous. In

other words, for some vector fields, both the change in action and change in measure

simultaneously vanished in the large-N limit. We were looking for additional equations to

supplement the LE and alleviate their underdeterminacy.

Now, the LE can be regarded as the large-N limit of the finite-N Schwinger-Dyson

equations (SDE). The SDE are conditions for the invariance of matrix integrals for multi-

trace correlations under infinitesimal non-linear changes of integration variables. They

relate a change in action to a sum of a change in measure and change in observable. While

the first two are usually of order N0, the latter2 is usually of order N−2. So naively, in the

large-N limit, the latter drops out and using factorization, we get back the LE.3 However,

in the special case where the vector field is a symmetry of both action and measure in the

large-N limit, the naive large-N limit of the SDE is vacuous and one must go to the next

order in 1/N2 to get the leading condition. For generic vector fields, this O(1/N2) SDE

would not be an equation for the single-trace correlations alone, since it involves O(1/N2)

corrections to the factorized result for multi-trace correlations. However, remarkably, we

show that if a vector field is a symmetry of the action in the large-N limit, then it is

also a symmetry4 at each order in 1/N2. The same also holds for symmetries of measure.

The simple reason is that there are more independent variables as N grows, and so more

conditions on a vector field to be a symmetry as N increases. Non-anomalous vector

fields define simultaneous symmetries of action and measure in the large-N limit. Thus,

for non-anomalous vector fields, the change in action and measure terms drop out of the

O(1/N2) SDE, which then becomes a condition for invariance of the expectation value of

the observable in the large-N limit, schematically LvGi1···in = 0. This latter condition only

involves single-trace correlations Gi1···in , and is what we call a non-anomalous Ward identity

(WI). WI are associated to vector fields v that leave both action and measure invariant in

the large-N limit. Lv is the Lie derivative along v. It is precisely for such vector fields that

2There is no O(1/N) contribution in a matrix model, i.e. in the absence of quarks or N-vectors.
3This is why LE are also called factorized Schwinger-Dyson equations. The name Virasoro constraints

is also used, especially in applications to string theory.
4There are potentially more symmetries at finite-N than at large-N , so the converse is almost certainly

false.
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the LE are vacuous. We show that such vector fields form an infinite dimensional graded

Lie algebra. Thus, as N → ∞, the SDE imply not just the LE, which are associated to

generic vector fields, but also WI, which are associated to non-anomalous vector fields.

The latter are easily overlooked in a naive passage to the large-N limit. Naively, the WI

appear to be ‘universal’, i.e. independent of the matrix model action, but this is not really

true. Whether or not a WI holds is determined by whether the corresponding vector field

is a simultaneous symmetry of both action and measure.

In retrospect, these non-anomalous symmetries and WI are not unexpected. In Yang-

Mills theory, non-anomalous symmetries include Poincare and BRST invariance. WI for the

latter are Slavnov-Taylor identities. Our non-anomalous WI share with the Slavnov-Taylor

identities the structural similarity of being homogeneous linear equations for correlations.

Just like our WI, the Slavnov-Taylor identities seem independent of the gauge-fixed Yang-

Mills action, until one realizes they hold only because the action and measure are BRST

invariant. In Yang-Mills theory, while Poincare transformations act linearly on the fields,

BRST transformations are quadratically non-linear. For specific matrix models, we find

non-anomalous symmetries that are linear, quadratic (n = 2) and cubic (n = 3); there is

no limit to the possible non-linearity of such symmetries. Moreover, for n > 1, some rank-

n+1 non-anomalous symmetries can be obtained via the Lie brackets of rank-n symmetries.

This is reminiscent of how Poisson brackets of conserved charges (if non-vanishing), give

higher conserved charges in integrable models.

We find a significant difference between 1-matrix models and multi-matrix models. The

measure for a single matrix in the large-N limit admits only one continuous symmetry, i.e.

translations of the matrix. Translations, however, are not a symmetry of any non-trivial 1-

matrix action. Thus, non-trivial 1-matrix models have no non-anomalous WI. Interestingly,

we find that the measures for multi-matrix models allow for large classes of symmetries,

some of which may also be symmetries of a given action.

In practice, once a non-anomalous symmetry of a model is known, it is easier to first

solve the resulting WI and then consider the LE. The WI, being homogeneous linear equa-

tions, force several correlations or linear combinations thereof to vanish. This simplifies

analysis of the LE, which are mildly non-linear. However, we caution that some WI may

contain the same information as contained in the LE, while others may provide new con-

ditions.

We emphasize that the techniques and results of this paper are exact. They do not

involve any approximation beyond the passage to N = ∞. Our methods apply to single-

trace correlations of generic hermitian multi-matrix models with polynomial actions. They

are not special to any subclass of actions or correlations. Of course, the non-anomalous

symmetries and WI will depend on which model we consider. One lesson we learned is that

though it is a bit laborious, it is possible to solve the LE and WI of large-N multi-matrix

models to determine exact correlations, starting from the lowest rank ones.

Finally, our derivation of the SDE, LE and WI makes use of the matrix integral repre-

sentation for correlations. In cases where these integrals converge, we expect the equations

to be rigorously valid. When the matrix integrals diverge, the SDE, LE and WI are only

formal statements and their consistency is not guaranteed by our work. Indeed, we seem
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to find an example where formal use of these equations for a model whose matrix integrals

diverge, leads to inconsistencies. We are yet to understand the deeper significance of this.

We can give another interpretation of our results. Suppose one were to calculate

single trace correlations of a large-N multi-matrix model. Then in many cases one would

find there are several linear combinations of correlations that vanish. One might look for

a naturalness-type explanation for this i.e., a non-anomalous symmetry that forces those

linear combinations to vanish. In some cases, there is a discrete symmetry (such as A → −A

for correlations of odd order for an even action) that does the job. The results of this paper

may be regarded as the discovery of several new continuous non-anomalous symmetries of

multi-matrix models. For example, δA1 = a[A1, [A2, A1]] and δA2 = a[[A1, A2], A2] is a non-

anomalous symmetry of the gaussian+YM 2-matrix model for all real a. Such symmetries

lead to WI, which ensure that the quantities in question vanish.

Organization and summary of results. In section 2 we determine the SDE of hermi-

tian multi-matrix models. We show that in the large-N limit, they lead to LE supplemented

by WI. It is asserted that the WI are to be imposed for every vector field that is a simul-

taneous symmetry of action and measure in the large-N limit. The proof of validity of the

WI is completed in sections 3.3 and 4.1. In section 2.1 we explain why the WI trivialize

for a 1-matrix model. Section 2.2 exhibits that multi-matrix LE are often underdeter-

mined and this motivates the need for additional equations to determine correlations. WI

potentially alleviate the underdeterminacy of LE. In section 3 we characterize measure pre-

serving vector fields of multi-matrix models in the large-N limit. We show that they form

an infinite dimensional Lie algebra (section 3.4). Measure preserving transformations of 2-

and 3-matrix models are given in section 3.5. We work out the linear and quadratic non-

anomalous symmetries of Gaussian, Chern-Simons, Yang-Mills and Gaussian+Yang-Mills

multi-matrix models in sections 4.3 and 4.4 and also construct some cubic symmetries via

Lie brackets of quadratic ones. In section 5 we explicitly give the LE and non-anomalous

WI for the Gaussian, Gaussian+YM and Chern-Simons models. We show that several

correlations vanish, determine some non-vanishing correlations, and also obtain non-trivial

relations among other non-vanishing correlations. In section 5.4 we show that formal use

of LE and WI for a model whose matrix integrals do not converge potentially leads to

inconsistencies. Some outstanding questions are collected in 6. In appendix A we give an

alternate derivation of the SDE that preserves hermiticity of matrices. In appendix A.1

we consider some other possible changes of variables in an unsuccessful search for equa-

tions satisfied by the N = ∞ single trace correlations, over and above the LE and WI. In

appendix C we argue that the WI by themselves (without use of LE) cannot determine

all correlations of a non-trivial model. In appendix D we quote a useful formula for the

number of cyclically symmetric tensors of rank-n in a Λ-matrix model.

2. Schwinger-Dyson equations and Ward identities

We consider a bosonic5 Euclidean matrix model with Λ random hermitian matrices Ai, i =

5It is possible to extend these methods to models with gluon and ghost fields, such as gauge fixed Yang-
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1, 2, · · · ,Λ. The action tr S(A) = tr
∑

|J |≤m SJAJ is taken to be a polynomial. Due to

the trace, only the cyclic projections of the coupling tensors SI contribute to the action.

Multi-indices are denoted by capital letters, for example, I = i1i2 · · · in. Repeated lower

and upper indices as summed and |I| denotes the length of the multi-index.

Observables are functions of Ai that are invariant under the global adjoint action

Ai → UAiU
† of U ∈ U(N). An important class of such functions are the trace invariants

ΦI = 1
N tr AI . The partition function and multi-trace correlations are defined as

Z =

∫ Λ
∏

j=1

dAje
−N tr S(A) and 〈ΦK1 · · ·ΦKn〉 =

1

Z

∫

ΠjdAje
−N tr S(A)ΦK1 · · ·ΦKn . (2.1)

〈ΦK1 · · ·ΦKn〉 is symmetric under interchange of any pair from K1, · · · ,Kn. It is cyclically

symmetric in each Ki separately. 〈ΦK1 · · ·ΦKn〉 may be expanded in inverse powers of N2

〈ΦK1 · · ·ΦKn〉 = G
(0)
K1;K2;···;Kn

+
1

N2
G

(2)
K1;K2···;Kn

+
1

N4
G

(4)
K1;K2···;Kn

+ · · · . (2.2)

The coefficient of N−2h can be regarded as a sum of Feynman diagrams that can be drawn

on a Riemann surface with h handles and n disks cut out.6 The perimeter of each disk is

associated to one of the inserted Ki’s. In particular, for h = 0, these are planar diagrams.

Each of the G
(2h)
K1;···;Kn

is symmetric in the multi-indices K1, · · · ,Kn. Factorization of multi-

trace correlations in the large-N limit [22] means that G(0) can be written as a product of

single trace correlations

lim
N→∞

〈ΦK1 · · ·ΦKn〉 = G
(0)
K1;K2;···;Kn

= GK1 · · ·GKn , where GK = lim
N→∞

〈
tr

N
ΦK〉. (2.3)

The single-trace gluon correlations GK are cyclically symmetric in K and satisfy the her-

miticity condition G∗
K = GK̄ provided SI also satisfy this property. Here K̄ is the word

K with order of indices reversed. GK will also be referred to as moments, they are the

moments of a non-commutative probability distribution [13] when Λ > 1. The rank of GK

is defined as |K|.

To determine correlations, we derive Schwinger-Dyson equations (SDE), conditions for

invariance of matrix integrals for 〈ΦK1 · · ·ΦKn〉 under infinitesimal non-linear changes of

variables7

[Ai]
a
b → [A′

i]
a
b = [Ai]

a
b + vI

i [AI ]
a
b , vI

i infinitesimal real parameters for |I| ≥ 0. (2.4)

These include the BRST-type of transformations used to derive the Slavnov-Taylor identi-

ties of gauge-fixed Yang-Mills theory. For example, in Lorentz gauge the BRST transfor-

mations are infinitesimal quadratic transformations (λ is an infinitesimal anti-commuting

Mills theory. In this case the Ai would include hermitian matrices as well as matrices with grassmann

entries.
6A pictorial representation of (2.2) for a four-point correlation would resemble figure 1.8 on page 31 of

ref. [21]
7These changes of variable don’t always preserve hermiticity of Ai. Under a change of integration

variable, the integrand, measure as well as domain of integration may change, but the value of the integral

is unchanged. It is possible to derive the SDE by making hermitian changes of variable, see appendix A.
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parameter),

Aµ → Aµ + λ∂µc + λ[Aµ, c], c → c + λ[c, c]+, c̄ → c̄ + λ∂µAµ. (2.5)

To calculate the effect of (2.4) on the integral (2.1) defining 〈ΦK1 · · ·ΦKn〉 we need8 the

infinitesimal change in action, measure and the inserted observable ΦK

e−N tr SJAJ 7→ e−N tr SJAJ (1 − N2vI
i S

J1iJ2ΦJ1IJ2) + O(v2),

det

(

∂[A′
i]

a
b

∂[Aj ]cd

)

= 1 + N2vI
i δ

I1iI2
I ΦI1ΦI2 + O(v2)

ΦK 7→ ΦK + δLiM
K vI

i ΦLIM . (2.6)

The conditions for invariance of 〈ΦK1 · · ·ΦKn〉 to linear order in vI
i are the finite N SDE9

vI
i S

J1iJ2〈ΦJ1IJ2ΦK1 · · ·ΦKn〉 = vI
i δI1iI2

I 〈ΦI1ΦI2ΦK1 · · ·ΦKn〉 (2.7)

+
1

N2

n
∑

p=1

δ
LpiMp

Kp
vI
i 〈ΦK1 · · ·ΦKp−1ΦLpIMpΦKp+1 · · ·ΦKn〉.

There is a priori one such SDE for each vector field vI
i and each n = 0, 1, 2, · · ·, where n is

the number of insertions. The l.h.s. is the expectation value of the change in action (along

with ΦK insertions). The first term on the r.h.s. is the expectation value of the change in

measure (with ΦK insertions) and the second term on the r.h.s. is the expectation value of

the change in insertions ΦK . So far, we have not made any approximations. Let us now

expand the multi-trace correlations according to (2.2) and the factorization formula (2.3).

The SDE at order 1/N0 are the large-N factorized SDE(fSDE) or loop equations(LE).

They only involve the large-N limits of single trace correlations GJ

vI
i SJ1iJ2GJ1IJ2 = vI

i δ
I1iI2
I GI1GI2 = vI

i ηi
I . (2.8)

Using the notation Lv = vI
i L

i
I for the vector fields associated to the infinitesimal

changes (2.4), these LE may be written LvS
JGJ = vI

i ηi
I where ηi

I = δI1iI2
I GI1GI2 . Here the

action of the vector fields on the moments is Li
IGJ = δJ1iJ2

J GJ1IJ2 and extends by linearity

and the Leibnitz rule to polynomials in the GJ . Moreover, the Lie bracket of two such

vector fields is

[Li
I , L

j
J ] = δJ1iJ2

J Lj
J1IJ2

− δI1jI2
I Li

I1JI2 (2.9)

or [Lu, Lv] = Lw where Lw = wK
k Lk

K and

wK
k =

∑

K=K1IK2

(uI
i vK1iK2

k − uK1iK2
k vI

i ). (2.10)

8〈ΦK1
· · ·ΦKn

〉 is the quotient of two integrals. Here we make a change of variable in the numerator but

not the integral for Z in the denominator. We could change variables in each, but this doesn’t give new

equations.
9For the purpose of deriving the loop equations and Ward identities, it is adequate to start with SDE

for single trace correlations, so the reader could set n = 1 in a first reading.
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At O(1/N2), the SDE (one for each v and n ≥ 0) involve the GJ as well as the G
(2)
K ’s

vI
i SJ1iJ2G

(2)
J1IJ2;K1;···;Kn

= vI
i δ

I1iI2
I G

(2)
I1;I2;K1;···;Kn

+vI
i

n
∑

p=1

δ
LpiMp

Kp
GK1 · · ·GKp−1GLpIMpGKp+1 · · ·GKn . (2.11)

We could continue listing the SDE at each order in 1/N2, but we refrain from doing so

since they no longer involve the single trace correlations GJ . GJ are the primary objects of

interest in the large-N limit and our goal is to determine them for a given action S(A). It

would be ideal if we could uniquely determine them by solving the LE (2.8). Unfortunately,

as was demonstrated in [20] (and reviewed in 2.2), this is not possible for many interesting

actions S(A), since the LE are underdetermined. One source of this problem was that there

are vector fields v for which both l.h.s. and r.h.s. of (2.8) identically vanish for all10 GJ ,

so that the LE for those v are vacuous. Such vector fields are associated to simultaneous

symmetries of the action and measure in the large-N limit. We will call such symmetries

non-anomalous symmetries of the large-N limit.11 Of course, in general, v need not be a

symmetry of either action or measure.

We would like to use the O(1/N2) SDE (2.11) to determine the GJ that the LE do not

fix. In principle, (2.11) are always valid. However, (2.11) involve the G(2)’s which we do

not wish to determine (and most likely cannot, without also involving the O( 1
N4 ) SDE and

so on). Thus, we would like to use the subleading SDE (2.11) only for those v for which

the LE (2.8) are vacuous. But even these equations would seem to involve the pesky G(2)’s.

Fortunately, a remarkable stroke of good fortune comes to our rescue. Suppose a vector

field v is such that it is a simultaneous symmetry of the action and measure at N = ∞, i.e.

vI
i SJ1iJ2GJ1IJ2 = 0 = vI

i η
i
I for all GJ . Then we will show (sections 3.3 and 4.1) that v is

also a simultaneous symmetry at finite N , and thence a symmetry at each order in 1/N2:

vI
i δI1iI2

I 〈ΦI1ΦI2ΦK1 · · ·ΦKn〉 = 0 = vI
i S

J1iJ2〈ΦJ1IJ2ΦK1 · · ·ΦKn〉 ∀ n = 0, 1, 2, · · ·

if vI
i SJ1iJ2GJ1IJ2 = 0 = vI

i η
i
I ∀ GJ . (2.12)

Thus, the terms involving the G(2)’s in (2.11) would identically vanish for such v and (2.11)

would reduce to a set of ‘Ward’ identities

vI
i

n
∑

p=1

δ
LpiMp

Kp
GK1 · · ·GKp−1GLpIMpGKp+1 · · ·GKn = 0 ∀ Kj , n ≥ 1. (2.13)

We call these ‘Ward’ identities (WI) since they are analogues of the Ward-Takahashi-

Slavnov-Taylor identities of Yang-Mills theory. The latter are a consequence of BRST

changes of variable (2.5) in functional integrals. Recall that the BRST transformations are

also non-anomalous in the sense that they leave both the gauge fixed Yang-Mills action

and measure invariant.

10When we say ‘for all GJ ’, we really mean ‘for all cyclic and hermitian GJ ’.
11Anomalous symmetries leave the action invariant but not the measure.
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These Ward identities can be written more compactly as

Lv(GK1 · · ·GKn) = 0 ∀ Kp, n ≥ 1. (2.14)

Those for n > 1 follow from those for n = 1 and the Leibnitz rule. So the WI may be taken

as

LvGK = 0 ∀ K provided v is such that vI
i S

J1iJ2GJ1IJ2 = 0 = vI
i η

i
I ∀ GJ . (2.15)

It is satisfying to see that WI, which arise as a consequence of non-anomalous symmetries,

may be regarded as a special case of the more general concept of Schwinger-Dyson equa-

tions. This is really a statement about quantum field theory in general, though we are

discussing matrix models here. Traditionally [23] Ward-like identities are not regarded as

related to Schwinger-Dyson equations in this manner. As pointed out in [20] and reviewed

in section 2.2, the factorized large-N SDE are often insufficient to determine the correla-

tions of a matrix model. However, when the fSDE are supplemented by the above WI, it

becomes possible to determine many (and possibly all) the correlations, as we will see in

later sections.

2.1 The case of a single matrix

For a 1-matrix model with action tr S(A) = tr
∑

1≤n≤m SnAn, we use the changes of

variable Lv : A → A+
∑

n≥−1 vnAn+1. A convenient basis is LnA = An+1, n = −1, 0, 1, . . ..

These are familiar from the Lie algebra of polynomial vector fields on the real line, Ln =

xn+1 ∂
∂x , n = −1, 0, 1, . . .. Their Lie bracket is [Lm, Ln] = (n − m)Lm+n. Equivalently,

Lu =
∑

n≥−1

unLn with [Lu, Lv] = Lw where wk =
∑

m+n=k
m,n≥−1

(n − m)umvn. (2.16)

Their action on the moments Gn = limn→∞〈Φn〉 is LkGn = nGk+n. Here Φn = tr
N An. The

moments are real by hermiticity of A. The LE are

∑

k≥−1

vk

m
∑

n=0

nSnGk+n =
∑

k≥−1

vkηk =
∑

k≥−1

vk

∑

p+q=k
p,q≥0

GpGq. (2.17)

The l.h.s. is the expectation value of change in action
∑

k≥−1 vkLk
∑

1≤n≤m SnGn while

the r.h.s. is the expectation value of the infinitesimal change in measure in the large-N

limit.

The only vector fields for which the N = ∞ expectation value of the change in measure

vanishes, are translations A → A+v−11. To see this note that the change in measure term

is

∑

k≥−1

vk

∑

p+q=k
p,q≥0

GpGq = v0 + 2v1G1 + v2(2G2 + G2
1) + · · · (2.18)
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If this is to vanish for arbitrary12 real G1, G2, · · ·, then we must have v0 = v1 = v2 = · · · = 0.

Thus only v−1 can be non-vanishing, which corresponds to a translation.

The only action for which translations are a symmetry in the large-N limit is the trivial

action, S(A) = constant: the expectation value of change in action under a translation is

∑

k≥−1

vk

m
∑

n=0

nSnGn+k = v−1

m
∑

n=0

nSnGk+n = v−1(S1+2S2G1+3S3G2+· · ·+mSmGm−1).

(2.19)

If this must vanish ∀ Gn, we must have S1 = S2 = · · · = Sm = 0, i.e. a trivial action.

Thus, for a 1-matrix model, we have no infinitesimal simultaneous symmetries of action

and measure in the large-N limit. Consequently, there are no WI to supplement the LE

with.

This leaves a small mystery for 1-matrix models. As discussed in [20], the LE (2.17)

of a 1-matrix model are underdetermined. They do not fix G1, G2, · · ·Gm−2. The higher

moments are fixed in terms of these by the LE. How are the first few moments to be

determined if there are no WI to supplement the LE? Of course, for a 1-matrix model,

there are alternative techniques such as solving the integral equation for the eigenvalue

density [2]. For multi-matrix models, the LE are often more severely underdetermined

(there are an infinite number of moments that are not fixed). Remarkably, for multi-matrix

models, where no alternative systematic method of solution exists, the WI do alleviate the

underdeterminacy of the LE (section 5).

2.2 Underdeterminacy of multi-matrix loop equations

The multi-matrix LE (2.8), can also be written as SJ1iJ2GJ1IJ2 = δI1iI2
I GI1GI2 for each i

and I. This form, where we take the monomial basis Li
I for vector fields Lv is convenient for

our current discussion. In general, these LE are underdetermined, as found in section 2.2

of ref. [20]. Part of the reason for this underdeterminacy is the presence of non-anomalous

symmetries of action and measure. First, we establish that the LE for given I, i can be

regarded as a system of inhomogeneous linear equations for higher rank correlations with

lower rank ones possibly appearing non-linearly. From the LE, it is clear that if there are

any correlations appearing on the l.h.s. , they will be of a higher rank than the ones on

the r.h.s. . More precisely, suppose the action is an mth order polynomial (i.e. there is a

non-vanishing coupling tensor SK with |K| = m). l.h.s. of the LE for given I, i (if it is non-

trivial13), involves correlations only linearly and with a rank between |I| and |I| + m − 1,

while the highest rank correlation on the r.h.s. has rank |I|−1 . Even if the l.h.s. vanishes,

the highest rank correlation in the LE still appears linearly, but now on the r.h.s. , and

12The only constraints on the moments are that they be real and satisfy the moment inequalities, i.e.

that the Hankel matrix gi,j = Gi+j be a positive matrix.
13Even if there is an SK 6= 0 with |K| = m, it may still happen that for some choice of I and i,

the coefficients of all correlations of rank |I | + m − 1 on the l.h.s. of the LE vanish. An example is the

gaussian+YM 2-matrix model LE with m = 4 and empty I , given later in this section. Thus, it is not true

in general that the maximal rank correlation appearing in a LE has rank |I |+m−1. This possibility, which

is special to multi-matrix models and has no analogue for 1-matrix models was overlooked in ref. [20].
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has rank |I| − 1. However, in many cases, we find that this system of linear equations is

inadequate to determine all GI .

Let us illustrate this with a Gaussian + Yang-Mills 2-matrix model tr S(A) =

tr [m2 (A2
1 + A2

2) −
1
2α [A1, A2]

2]. The matrix integrals for this model converge, and the

correlations make rigorous sense and could for instance be measured numerically. So it

makes sense to try to find them by solving the LE. In this case, the cyclically symmetric

coupling tensors are

S11 = S22 =
m

2
, S1122 = S2112 = S2211 = S1221 = 1/(4α) and S1212 = S2121 = −1/(2α).

(2.20)

The LE are

i = 1 : mGI1 − α−1(2GI212 − GI221 − GI122) = δI11I2
I GI1GI2 and

i = 2 : mGI2 − α−1(2GI121 − GI112 − GI211) = δI12I2
I GI1GI2 . (2.21)

For I = ∅, the LE say14 G1 = G2 = 0. The LE for |I| = 1 relate 2- and 4-point correlations:

I = 1 : mG11−
1

α
(2G1212 − 2G1221) = 1 & mG12−

1

α
(2G1121 − G1112 − G1211) = 0

I = 2 : mG21−
1

α
(2G2212 − G2221 − G2122) = 0 & mG22−

1

α
(2G1212 − 2G1221) = 1. (2.22)

They give the conditions G12 = G21 = 0, G11 = G22 and mG11 = 1 + 1
α (2G1212 − 2G1122).

They do not determine G11 and give only one relation among the 6 independent rank-

4 moments. LE with |I| = 2 relate 3- and 5-point correlations (since we already found

Gi = 0.)

I = 11 : mG111 −
1

α
(2G11212 − 2G11122) = 0 & mG112 = 0.

I = 12 : mG121 −
1

α
(G12122 − G11222) = 0 & mG122 −

1

α
(G11212 − G11122) = 0

I = 21 : mG211 −
1

α
(G12122 − G11222) = 0 & mG212 −

1

α
(G11212 − G11122) = 0

I = 22 : mG221 = 0 & mG222 −
1

α
(2G12122 − 2G11222) = 0. (2.23)

The |I| = 2 LE imply that all Gijk vanish and give two relations among the 8 independent15

5th rank moments, G12122 = G11222 and G11212 = G11122. The |I| = 3 LE relate 2- 4- and

14This example illustrates that even in a quartic model (m=4), the LE may determine correlations of

rank m − 2 = 2 or less.
15c(n, Λ) denotes the dimension of the space of cyclically symmetric hermitian tensors of rank n in a Λ

matrix model. A formula for c(n, Λ) is given in appendix D.
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6-point moments (we omit those equations that contain no new information)

I = 111 : mG1111 −
1

α
(2G111212 − 2G111122) = 2G11 and mG1112 = 0

I = 112 : 2G112212 = G111222 + G112122

mG1122 −
1

α
(2G111212 − G112112 − G111122) = G11

I = 121 : 2G121212 = G112122 + G112212

mG1212 =
2

α
(G112112 − G111212)

I = 211 : 2G112122 = G112212 + G111222

I = 222 : mG1222 = 0 and mG2222 −
1

α
(2G121222 − 2G112222) = 2G22

I = 122 : mG1122 −
1

α
(2G121222 − G112222 − G122122) = G22

I = 212 : mG1212 =
2

α
(G122122 − G121222). (2.24)

However, these 11 equations (even if all are independent), are inadequate to find the

c(n = 6,Λ = 2) = 14 independent rank-6 correlations, let alone the unknown 2 & 4-point

correlations.

Similarly, consider a Yang-Mills 2-matrix model tr S(A) = − 1
2α tr [A1, A2]

2. The

matrix integrals do not converge here due to the flat directions in the commutator squared

action. So our derivation of the LE and WI are not strictly valid in the case, though

they can be considered formally. In particular, it is not clear that the LE and WI form a

consistent system of equations for this model. Nor is it clear how one could check an answer

for a particular correlation, say by Monte Carlo integration, since the matrix integrals do

not converge. Nevertheless, we can consider the LE formally here in order to show that

they are underdetermined. The LE are

1

α
vI
1(GI122+GI221−GI212) +

1

α
vI
2(GI211 + GI112 − GI121) = [vI

1δI11I2
I + vI

2δI12I2
I ]GI1GI2 .

(2.25)

Since vI
i are arbitrary, we get a pair of LE (for each word I with |I| ≥ 0)

GI221 + GI122 − 2GI212 = αδI11I2
I GI1GI2 , GI112 + GI211 − 2GI121 = αδI12I2

I GI1GI2.

(2.26)

All correlations of rank 1 or 2 are undetermined. In addition, taking I = ∅ does not give

any relation for third rank moments, since the l.h.s. of the LE identically vanish on account

of cyclic symmetry. As for rank-4 moments, we get only one relation 2G1212−2G1122 = −α,

from the LE, which is inadequate to fix the 6 independent 4th rank correlations.

Similarly, the LE of the Chern-Simons 3-matrix model tr S(A) = 2iκ
3 εijk tr AiAjAk

and Mehta 2-matrix model [24] tr [cA1A2 + (g/4)(A4
1 + A4

2)] are underdetermined (§2.2

of [20]).
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3. Measure preserving transformations

Our aim in this section is to determine the vector fields Lv : Ai → Ai + vI
i AI under whose

action the matrix model measure is invariant. We call such transformations measure or

volume preserving. These vector fields are universal in the sense that they are independent

of the choice of action S(A). They can only depend on the size of the matrices (N), the

number of matrices (Λ) and on the ensemble from which the matrices are drawn (hermitian

in our case).

The main result of this section16 is that vector fields Lv = vI
i L

i
I satisfying (3.29) are

measure preserving for any N . In the large-N limit these are the only ones, but for finite

N there could be more. In particular, a symmetry of the matrix model measure at N = ∞

is automatically a symmetry of the measure at finite N and consequently at each order in

1/N2. A simpler sufficient condition for a vector field to be measure preserving is

v
(I)i(J)
i + v

(J)i(I)
i = 0, ∀ I, J. (3.1)

Here (· · ·) denotes cyclic symmetrization (3.12). Measure preserving vector fields form an

infinite dimensional Lie algebra for Λ > 1 with Lie bracket (2.9) (see section 3.4). For

Λ = 1, it is a 1-dimensional abelian Lie algebra consisting of translations A → A + v−11

(see section 2.1).

3.1 Change in measure due to action of (homogeneous) vector fields

If all I appearing in the components vI
i of the vector field Lv = vI

i Li
I have the same length

|I|, then we will call such a vector field homogenous of rank |I|. The variation of the

measure under (a not necessarily homogenous) infinitesimal change of variable,

Ai → A′
i = Ai + vI

i AI (3.2)

is the first order term in the expansion of the determinant of the Jacobian J in powers of

vI
i

J = det

[

∂A′d
ic

∂Ab
ja

]

=det[δi
jδ

a
c δd

b + vI
i δ

I1iI2
I ΦI1ΦI2 + O(v2)]=1 + N2vI

i δI1iI2
I ΦI1ΦI2 + O(v2).

(3.3)

Here ΦI = tr
N AI . Thus infinitesimally, the change in the measure per N2 is

δJ

N2
= vI

i δI1iI2
I ΦI1ΦI2. (3.4)

We want to determine those vI
i ’s for which δJ/N2 = 0 for all ΦK which are cyclically

symmetric in K and hermitian Φ∗
K = ΦK̄ . So we should set the coefficients of independent

ΦK to zero. Unfortunately, for finite-N , the analysis is complicated by the fact that ΦK are

not all independent. Indeed, they are related by trace identities (analogues of conditions

16Section 3.2, where this is established is a bit long and can be skipped in a first reading.
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from vanishing of characteristic polynomial for a single matrix). However, in the large-N

limit, the ΦI (and consequently their expectation values, GI = 〈ΦI〉) are independent up

to cyclic symmetry and hermiticity. The expectation value of the infinitesimal change in

measure becomes

lim
N→∞

〈
δJ

N2
〉 = vI

i δ
I1iI2
I GI1GI2 = vI

i η
i
i ≡ v · η. (3.5)

Setting the coefficient of each independent monomial in the GI to zero leads to a charac-

terization of the measure preserving vector fields vI
i in the large-N limit (section 3.2).

An inspection of v · η reveals that it vanishes under the sum of two homogeneous

transformations δAi =
∑

|I|=const v
I
i AI +

∑

|J |=const v
J
i AJ with |I| 6= |J | if and only if it

vanishes under each separately. So without loss of generality, we restrict to homogenous

vector fields.

Notice from (2.9) that the commutator of homogenous vector fields of rank p > 1 and

q > 1 is a homogenous vector field of rank p + q − 1. Using this, we define the grading of

a homogenous vector field
∑

|I|=const v
I
i Li

I as |I| − 1. With this, the Lie algebra L of all

L’s17 becomes a Lie algebra L =
⊕

p≥0 Lp graded by the non-negative integers, where

Lp = span
{

Li
I : |I| = p + 1

}

and [Lp, Lq] ⊂ Lp+q. (3.6)

This can be used to generate homogeneous higher rank volume preserving vector fields

from ones with lower rank, provided the latter do not form an abelian Lie algebra.

3.2 Characterization of measure preserving vector fields for N = ∞

Roughly, the condition that a vector field be volume preserving becomes stronger as

N → ∞, since the number of independent trace invariants grows in this limit. So there

are potentially a lot more volume preserving vector fields at finite-N than at N = ∞.

Fortunately, the condition that a vector field be volume preserving at N = ∞ will be seen

to be a sufficient condition for it to be volume preserving at any finite N . In this manner,

we will establish that if the change of measure term in the LE (2.8) vanishes for a given

vector field v, then it also vanishes18 in the finite-N Schwinger-Dyson equations (2.8) and

indeed at each order in 1/N2 for the same vector field v. To characterize volume preserving

vector fields in the large-N limit we must solve the equations v · η = 0 for vI
i . Let us begin

with homogeneous vector fields of lowest rank.

• Constant shift: δAi = vi1. In this case v · η = 0. So all homogeneous vector fields

of rank zero are symmetries of the measure. This reflects translation invariance of

the measure.

• Linear transformation: δAi = vj
i Aj are measure preserving iff they are traceless:

v · η = vj
i δ

i
j = vi

i so v · η = 0 ⇔ v is traceless vi
i = 0. (3.7)

17Except translations v∅
i Li

∅ : Ai → Ai + v∅
i 1, which are a separate abelian algebra. ∅ is the empty word.

18There likely exist vector fields preserving the measure at finite-N but not at N = ∞.

– 14 –



J
H
E
P
0
2
(
2
0
0
7
)
0
7
3

• Quadratic: δAi = vjk
i AjAk. In this case,

v · η = vjk
i (δi

kGj + δi
jGk) = vji

i Gj + vik
i Gk = (vij

i + vji
i )Gj (3.8)

Thus quadratic vector fields that preserve the measure must satisfy vij
i + vji

i = 0.

• Cubic: δAi = vjkl
i AjAkAl

v · η = vjkl
i (δimn

jkl Gmn+δmin
jkl GmGn+δmni

jkl Gmn) = (vimn
i +vmni

i )Gmn+vmin
i GmGn.

(3.9)

This must vanish for all cyclic and hermitian GK . The linear term in G’s is cyclically

symmetric in mn, so it is not necessary that the coefficient of Gmn and Gnm separately

vanish. Rather, only the cyclic projection of Gmn’s coefficient must vanish. Similarly,

the quadratic term in G’s is symmetric under m ↔ n so only the symmetric projection

of its coefficient must vanish. Moreover, hermiticity implies G∗
j = Gj and G∗

mn =

Gnm = Gmn, so all 1- and 2-point correlations are real. We need not worry about

setting the coefficients of their imaginary parts to zero. Thus v ·η vanishes identically

if and only if

vimn
i + vinm

i + vmni
i + vnmi

i = 0 and vmin
i + vnim

i = 0. (3.10)

We can write this more succinctly as

v
i(mn)
i + v

(mn)i
i = 0 and vmin

i + vnim
i = 0. (3.11)

Here we introduced the cyclic symmetrization operation (· · ·) which is defined as19

v
(J)iK
i =

∑

π∈C|J|

v
π(J)iK
i , v

Ji(K)
i =

∑

σ∈C|K|

v
Jiσ(K)
i , v

(J)i(K)
i =

∑

π∈C|J|

σ∈C|K|

v
π(J)iσ(K)
i . (3.12)

• Quartic: δAi = vjklm
i AjAkAlAm

v · η = vjklm
i (δipqr

jklmGpqr + δpiqr
jklmGpGqr + δpqir

jklmGpqGr + δpqri
jklmGpqr)

= (vipqr
i + vpqri

i )Gpqr + vpiqr
i GpGqr + vpqir

i GpqGr

= (vipqr
i + vpqri

i )Gpqr + (vpiqr
i + vqrip

i )GpGqr. (3.13)

Here, the quadratic term is cyclically symmetric in qr, so its coefficient must be

cyclically symmetrized in qr. Similarly, the linear term is cyclically symmetric in

pqr so we must cyclically symmetrize its coefficient in pqr. However, there is a

further subtlety that we must address: GK are complex numbers, but their real and

imaginary parts are related to those of GK̄ via G∗
K = GK̄ . Hermiticity implies that

Gp and Gqr are real, so for the quadratic term, it is necessary and sufficient that (vI
i

are real)

v
pi(qr)
i + v

(qr)ip
i = 0. (3.14)

19C|J| is the cyclic group of order |J |. Note that we do not divide by the number of terms.
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On the other hand, G∗
pqr = Grqp. So <Gpqr = <Grqp and =Gpqr = −=Grqp. So it is

necessary and sufficient to set the coefficients of <Gpqr + <Grqp and =Gpqr −=Grqp

to zero separately:

v
i(pqr)
i +v

(pqr)i
i +v

i(rqp)
i +v

(rqp)i
i =0 and v

i(pqr)
i +v

(pqr)i
i −v

i(rqp)
i −v

(rqp)i
i =0 ∀ pqr.(3.15)

However, these two conditions are equivalent (by adding and subtracting) to the

single condition

v
i(pqr)
i + v

(pqr)i
i = 0 ∀ pqr. (3.16)

Therefore v · η vanishes if and only if

v
i(pqr)
i + v

(pqr)i
i = 0 and v

pi(qr)
i + v

(qr)ip
i = 0. (3.17)

• Quintic: For a rank 5 vector field Ai → Ai + vpqrst
i Apqrst to be volume preserving

we need

v · η=
∑

pqrs

(vipqrs
i +vpqrsi

i )Gpqrs+(vpiqrs
i +vqrsip

i )GpGqrs+(vpqirs
i +vrsipq

i )GpqGrs = 0.

(3.18)

Since moments of different ranks are independent, v · η = 0 iff the following three

equations are satisfied (we have cyclically symmetrized as in previous cases in order

to reduce to a sum over equivalence classes under cyclic symmetry, which is denoted

∼)
∑

pqrs/∼

(v
i(pqrs)
i + v

(pqrs)i
i )Gpqrs = 0,

∑

p,qrs/∼

(v
pi(qrs)
i + v

(qrs)ip
i )GpGqrs = 0,

and
∑

pq/∼,rs/∼

(v
(pq)i(rs)
i + v

(rs)i(pq)
i )GpqGrs = 0. (3.19)

It remains to take care of the relations imposed by hermiticity to select the inde-

pendent monomials. Consider the first equation in (3.19). By hermiticity <Gpqrs =

<Gsrpq and =Gpqrs = −=Gsrqp. So we further restrict the sum to equivalence classes

under reversal of order of indices. We will denote the combination of the quotient by

cyclic symmetrization and reversal of order of indices by the symbol ∼′. Then the

first condition in (3.19) becomes the pair

∑

pqrs/∼′

[

v
i(pqrs)
i + v

(pqrs)i
i + v

i(pqrs)
i + v

(pqrs)i
i

]

<Gpqrs = 0 and

∑

pqrs/∼′

[

v
i(pqrs)
i + v

(pqrs)i
i − v

i(pqrs)
i − v

(pqrs)i
i

]

=Gpqrs = 0. (3.20)

Since the sum is over independent moments, we set the coefficients to zero and get

v
i(pqrs)
i + v

(pqrs)i
i + v

i(pqrs)
i + v

(pqrs)i
i = 0 and

v
i(pqrs)
i + v

(pqrs)i
i − v

i(pqrs)
i − v

(pqrs)i
i = 0, (3.21)
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for each equivalence class pqrs under the relation ∼′. However, this pair is equivalent

to

v
i(pqrs)
i + v

(pqrs)i
i = 0 ∀ cyclic equivalence classes pqrs/ ∼ . (3.22)

A similar analysis of the last two conditions in (3.19) using hermiticity (G∗
p = Gp

and <Gqrs = <Gqrs and =Gqrs = −=Gqrs and G∗
pq = Gpq) allows us to identify the

coefficients of independent moments and set them to zero. When the dust settles,

the necessary and sufficient conditions for a 5th rank tensor to be measure preserving

are

v
i(pqrs)
i + v

(pqrs)i
i = 0; v

pi(qrs)
i + v

(qrs)ip
i = 0; v

(pq)i(rs)
i + v

(rs)i(pq)
i = 0 ∀ p, q, r, s.

(3.23)

We see that so far, the hermiticity relations between the GK , though taken into

account, did not make their presence felt in the final answer. This simplification is

due to Gi and Gij being real. The hermiticity relations will play a role in the necessary

and sufficient conditions for rank 7 and higher vector fields to be measure preserving.

This is because it is the first case where ηi
I involves quadratic monomials in moments

where both factors can be complex, e.g. GpqrGstu. This leads to complications which

we now deal with in the general case.

• Rank n: In the general case, δAi = vj1...jn

i Aj1 . . . Ajn and v · η = vI1iI2
i GI1GI2 is a

quadratic polynomial in moments. The necessary and sufficient conditions on v for

v ·η = 0 are got by selecting the independent monomials and setting their coefficients

to zero. We use three relations: (a) commutativity of products GIGJ = GJGI ,

(b) cyclicity GI = GJ if I, J are cyclically related and (c) hermiticity GI = G∗
Ī

or

<GI = <GĪ and =GI = −=GĪ . (a) ⇒ we must symmetrize the coefficients in I1 and

I2 and restrict the sum over I1 and I2 to include only (say) GI1GI2 and not GI2GI1

(this is denoted
∑′).

v · η = 0 ⇔
∑

I1,I2

′
(vI1iI2

i + vI2iI1
i )GI1GI2 = 0. (3.24)

Relation (b) means we must cyclically symmetrize coefficients in I1 and I2 and further

restrict the sum to cyclic equivalence classes of I1 and I2 (denoted I1/ ∼)

v · η = 0 ⇔
∑

I1/∼

I2/∼

′
[

v
(I1)i(I2)
i + v

(I2)i(I1)
i

]

GI1GI2 = 0. (3.25)

Implementing (c) is more tricky. We must identify monomials that are independent

after accounting for hermiticity. Taking < & = parts(vI
i ∈ R), we write v · η = 0 as
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the pair

∑

I/∼

J/∼

′
[

v
(I)i(J)
i + v

(J)i(I)
i

]

(<GI<GJ −=GI=GJ) = 0 and

∑

I/∼

J/∼

′
[

v
(I)i(J)
i + v

(J)i(I)
i

]

(<GI=GJ + <GJ=GI) = 0. (3.26)

The last two terms can be combined. Hermiticity ⇒ <GI = <GĪ ,=GI = −=GĪ .

So <GI<GJ is independent of =GI=GJ and we can set each part to zero separately.

Thus v · η = 0 iff

∑

I/∼

J/∼

′
[

v
(I)i(J)
i + v

(J)i(I)
i

]

<GI<GJ = 0 ,
∑

I/∼

J/∼

′
[

v
(I)i(J)
i + v

(J)i(I)
i

]

=GI=GJ = 0,

and
∑

I/∼

J/∼

′
[

v
(I)i(J)
i + v

(J)i(I)
i

]

<GI=GJ = 0. (3.27)

Here the sums include words I as well as their mirror images Ī, so the monomials

such as <GI<GJ are not all independent on account of the hermiticity relations. We

must further restrict the sums to equivalence classes under reversal of order of letters

in a word to get a truly independent basis for quadratic polynomials. Once this is

done we set the coefficients to zero and find that v ·η = 0 iff (the signs are determined

by the hermiticity relations)

v
(I)i(J)
i + v

(Ī)i(J)
i + v

(I)i(J̄)
i + v

(Ī)i(J̄)
i + I ↔ J = 0,

v
(I)i(J)
i − v

(Ī)i(J)
i − v

(I)i(J̄)
i + v

(Ī)i(J̄)
i + I ↔ J = 0 and

v
(I)i(J)
i + v

(Ī)i(J)
i − v

(I)i(J̄)
i − v

(Ī)i(J̄)
i + I ↔ J = 0. (3.28)

These can be slightly simplified to the following three conditions

v
(I)i(J)
i + v

(Ī)i(J̄)
i + I ↔ J = 0,

v
(Ī)i(J)
i + v

(I)i(J̄)
i + I ↔ J = 0,

v
(I)i(J)
i − v

(I)i(J̄)
i + I ↔ J = 0. (3.29)

Thus, a homogeneous vector field vI
i of rank n is volume preserving at N = ∞

(v · η = 0), iff conditions (3.29) are satisfied for each multi-index I and J such that

|I| + |J | = n − 1. Since conditions (3.29) are somewhat lengthy (though easy to

remember), it is pertinent to add that a sufficient (but in general not necessary)

condition for v to be measure preserving is

v
(I)i(J)
i + v

(J)i(I)
i = 0 ∀ I, J with |I| + |J | = n − 1. (3.30)
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More explicitly, this sufficient condition may be written as ([n] is the greatest integer

part of n)

v
i(j1...jn−1)
i + v

(j1...jn−1)i
i = 0,

v
j1i(j2...jn−1)
i + v

(j2...jn−1)ij1
i = 0,

v
(j1j2)i(j3...jn−1)
i + v

(j3...jn−1)i(j1j2)
i = 0,

...

v
(j1j2···j[ n−1

2 ]
)i(j

[ n+1
2 ]

···jn−1)

i + v
(j

[ n+1
2 ]

···jn−1)i(j1j2···j[ n−1
2 ]

)

i = 0. (3.31)

In fact, (3.30) is both necessary and sufficient for vector fields of rank ≤ 6.

Now, it is easy to see that a volume preserving vector field for N = ∞ is automatically

volume preserving for finite N . Suppose vI
i is such that v · η = vI

i δ
I1iI2
I GI1GI2 = 0, or

equivalently, such that conditions (3.29) are satisfied. Then it will automatically satisfy
δJ
N2 = vI

i δI1iI2
I ΦI1ΦI2 = 0. For, all we needed for v · η = 0 was commutativity of the

product of two GI ’s, cyclic symmetry and hermiticity of the GI . All these properties are

also satisfied by the ΦI ’s. Of course, there are likely to be vector fields other than those

satisfying (3.29) (i.e. v · η 6= 0) for which δJ
N2 = 0.

3.3 Volume preserving vector fields annihilate measure terms in LE and SDE

Thus far, we have shown that vector fields characterized in (3.29) leave the measure in-

variant δJ/N2 = vI
i δ

I1iI2
I ΦI1ΦI2 = 0 both for finite and infinite N . Moreover, they were all

the vector fields that left the measure invariant for N = ∞: vI
i δI1iI2

I GI1GI2 = vI
i η

i
I = 0. In

other words, the r.h.s. of the LE (2.8) identically vanish iff the vector field v satisfies (3.29).

On the other hand, multiplying (3.4) by ΦK1 · · ·ΦKn and taking expectation values we

get

vI
i δ

I1iI2
I 〈ΦI1ΦI2ΦK1 · · ·ΦKn〉 = 0 ∀ ΦK and n = 0, 1, 2, . . . (3.32)

provided v satisfy (3.29). Combining with the result of the previous paragraph, we see

that vector fields for which the r.h.s. of the LE (2.8) vanish, also annihilate the change of

measure term on the r.h.s. of the finite-N Schwinger-Dyson equations (2.8). Furthermore,

multiplying by N2 and letting N → ∞ we see that the same class of vector fields also

annihilate the change of measure term on the r.h.s. of the O(1/N2) SDE (2.11)

vI
i δ

I1iI2
I G

(2)
I1;I2;K1;···;Kn

= 0. (3.33)

This is a part of the result we needed in section 2 to establish the WI (2.15). The other part

involves identifying which of these volume preserving vector fields also leaves the action of

a specific matrix model invariant, a task we will undertake in section 4.

3.4 Volume preserving vector fields form an infinite dimensional Lie algebra

It should be possible, but laborious, to check that the Lie bracket of two vector fields of the

form (3.29) is again of the same form (we have checked this for vector fields of some low
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ranks). But there is a simpler argument (which uses a much deeper result from [13]) that

shows they form a Lie algebra. In [13] it was shown that there is an entropy function20

χ such that Li
Iχ = ηi

I = δI1iI2
I GI1GI2 . Suppose Lu, Lv are volume preserving. From

our results in sections 3.2 and 3.3, this means uI
i η

i
I = 0 and vI

i ηi
I = 0. Then we have

Luχ = 0 and Lvχ = 0. It follows therefore that [Lu, Lv]χ = (LuLv − LvLu)χ = 0. Thus

Lw = [Lu, Lv] is also volume preserving. We conclude that volume preserving vector fields

form a Lie algebra.

Example. The measure preserving vector fields corresponding to linear transformations,

Lu = ui
jL

j
i form the slΛ(R) Lie algebra for a Λ-matrix model. We already found (sec-

tion 3.2) that measure preserving linear transformations are the traceless ones. Here, we

check that their Lie bracket implied by (2.9) is the same as the slΛ(R) Lie algebra.

[Lu, Lv] = ui
jv

k
l [Lj

i , L
l
k] = ui

jv
k
l

(

δj
kL

l
i − δl

iL
j
k

)

= ui
kv

k
l Ll

i − ui
jv

k
i Lj

k = wi
lL

l
i , (3.34)

where wi
l = ui

kv
k
l − vi

ku
k
l = ([u, v])i

l is just the matrix commutator. Thus [Lu, Lv] = L[u,v]

and the linear symmetries form the Lie algebra slΛ(R).

Moreover, for Λ > 1 we can show that the space of measure preserving vector fields

is infinite dimensional. It is sufficient to consider each rank separately. First, the space of

rank-n vector fields vi1i2···in
i is Λn+1 dimensional. For a rank-n vector field to be measure

preserving it is sufficient (though not necessary) that it satisfy equations (3.30). There are

at most Λn−1 such linear equations (if they were not linearly independent or necessary, there

would be even fewer). Thus, the space of solutions is at least Λn+1 − Λn−1 dimensional.

This grows exponentially with rank, so measure preserving vector fields are an infinite

dimensional Lie algebra for Λ > 1.

3.5 Explicit examples for 2 and 3 matrix models

From sections 3.2 and 3.4, we know that linear volume preserving vector fields are traceless

matrices vj
i , i.e. elements of slΛ(R). This is a Λ2 − 1 dimensional space (3 dimensional for

a 2-matrix model and 8 dimensional for a 3-matrix model).

A generic quadratic vector field vjk
i in a Λ-matrix model is specified by Λ3 parameters.

But volume preserving vector fields obey relations given in section 3.2, which restrict the

number of independent coefficients. Let us work out volume preserving vjk
i for 2 and 3-

matrix models and determine the dimension of the space of such vector fields. The condition

for vjk
i to be volume preserving is vij

i + vji
i = 0. In a 2-matrix model this is the pair of

equations

2v11
1 + v21

2 + v12
2 = 0 and 2v22

2 + v12
1 + v21

1 = 0. (3.35)

So quadratic volume preserving vector fields are the 23 − 2 = 6 parameter family

Lv = vij
k Lk

ij = v11
2 L2

11 + v22
1 L1

22 + v12
1

[

L1
12 −

1

2
L2

22

]

+ v21
1

[

L1
21 −

1

2
L2

22

]

+v12
2

[

L2
12 −

1

2
L1

11

]

+ v21
2

[

L2
21 −

1

2
L1

11

]

. (3.36)

20However, χ cannot be expressed as a formal power series in GI .
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In a 3-matrix model there are three independent conditions

2v11
1 + v21

2 + v31
3 + v12

2 + v13
3 = 0, 2v22

2 + v12
1 + v32

3 + v21
1 + v23

3 = 0

and 2v33
3 + v13

1 + v23
2 + v31

1 + v32
2 = 0. (3.37)

So quadratic volume preserving vector fields are a 33 − 3 = 24 parameter family for Λ = 3.

4. Transformations that also preserve action

4.1 Establishing validity of Ward identities: last step

So far, we have identified the vector fields Lv = vI
i Li

I which leave the measure invariant in

the large-N limit and observed that they continue to be measure preserving even at finite

N . In order to obtain the WI (2.15), we need to determine which among these Lv are

also symmetries of the action. These are the non-anomalous infinitesimal symmetries. The

answer will, of course, depend on the action of the matrix model being studied. For the

infinitesimal change in ( 1
N ×) the action S(A) = tr SJAJ to vanish under Ai → Ai + vI

i AI ,

we need

LvS
JΦJ = vI

i S
JiiJ2ΦJ1IJ2 = 0. (4.1)

However, for finite N , not all the ΦI are independent even after accounting for cyclicity and

hermiticity, due to the trace identities and other such constraints satisfied by the ΦI . So it

is not straightforward to identify the necessary conditions on vI
i . But in the large-N limit

we may treat the ΦI as independent variables (up to cyclicity and hermiticity). Taking

expectation values, we must solve for vI
i in the equations

vI
i S

J1iJ2GJ1IJ2 = 0 ∀ cyclic and hermitian GI . (4.2)

For such vector fields, the l.h.s. of the LE (2.8) identically vanish. Moreover, a vector field

that solves (4.2)) will automatically solve the finite-N equation (4.1)), though the converse

need not be true. This is because all we use is cyclicity and hermiticity of GI , which is also

true of the ΦI . Now multiplying (4.1) by ΦK1 · · ·ΦKn, the same vector fields also satisfy

vI
i S

JiiJ2ΦJ1IJ2ΦK1 · · ·ΦKn = 0. (4.3)

Taking expectation values, we see that symmetries of the action in the large-N limit auto-

matically annihilate the change in action term (with insertions) appearing in the finite-N

SDE (2.8). In particular, multiplying by N2 and letting N → ∞, we see that the vector

fields satisfying (4.2) also annihilate the change of action term on the l.h.s. of the O(1/N2)

SDE (2.11)

vI
i S

JiiJ2G
(2)
J1IJ2K1···Kn

= 0. (4.4)

Combining this with our result from section (3.3) on volume preserving vector fields,

we come to the following conclusion. Suppose the vector field v is such that both l.h.s.

and r.h.s. of the large-N LE identically vanish, vI
i S

J1iJ2GJ1IJ2 = 0 = vI
i η

i
I . Then the
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change in action and change in measure term in the O(1/N2) SDE also vanish identically

vI
i SJiiJ2G

(2)
J1IJ2K1···Kn

= 0 = vI
i δ

I1iI2
I G

(2)
I1;I2;K1;···;Kn

. As a consequence, for such vector

fields (non-anomalous vector fields), the O(1/N2) SDE become WI (2.15) which may be

summarized as LvGK = 0 for all K. This completes the proof of validity of the WI.

4.2 Non-anomalous symmetries of specific models

It is straightforward to see that non-anomalous vector fields form a Lie sub-algebra of

the infinite dimensional Lie algebra of measure preserving vector fields (section 3.4). For,

LvS(G) = 0 and LwS(G) = 0 implies that [Lv, Lw]S(G) = 0. However, this Lie algebra is

not necessarily infinite dimensional and depends on the action of the matrix model.

This brings us to the task of determining the non-anomalous infinitesimal symmetries

of specific matrix models. In looking for measure preserving vector fields, recall (section 3.1)

that we could break up the problem into finding homogeneous measure preserving vector

fields of a given rank.21 The same strategy does not work in general for symmetries of the

action. However, if the action is itself a homogeneous polynomial,22 then (4.2) does not mix

vector fields of different ranks. In that case, every solution to (4.2) is a sum of homogeneous

solutions. More generally, the action may not be a homogeneous polynomial, as for a

Gaussian + Yang-Mills model. In such cases, not every solution of (4.2) is necessarily

a sum of homogeneous solutions, though there may still be large classes of homogeneous

solutions. For this reason, we begin by determining non-anomalous homogeneous action-

preserving vector fields of low rank.

A priori, it is not clear that there are any vector fields that leave both action and mea-

sure invariant. Indeed, for a 1-matrix model (section 2.1) there are none. We were pleas-

antly surprised to find not just linear but also non-linear non-anomalous symmetries for

several interesting multi-matrix models. We begin with linear non-anomalous symmetries

in section 4.3 and give examples of non-linear non-anomalous symmetries in section 4.4.

4.3 Examples of linear non-anomalous symmetries

We determine linear symmetries of both action and measure for the Gaussian Λ-matrix

model, Chern-Simons 3-matrix model, Yang-Mills and Gaussian+YM Λ-matrix models.

The linear non-anomalous symmetries of the gaussian, CS 3-matrix model, YM 2-matrix

model and gaussian+YM 2-matrix models form the orthogonal Lie algebra with respect

to the covariance matrix, sl3(R), sl2(R) and o(2) Lie algebras respectively. Not every

multi-matrix model has non-trivial linear non-anomalous symmetries. The pure-quartic

2-matrix model tr S(A) = tr (A4 + B4) or the model studied by Mehta [24], tr S(A) =

tr [cA1A2+(g/4)(A4
1 +A4

2)] have no non-trivial linear action preserving symmetries. Linear

symmetries form a closed Lie algebra among themselves (section 3.4), so their Lie brackets

cannot be used to generate new symmetries.

21A homogeneous vector field v of rank n is one whose components vI
i are non-vanishing only for |I | = n.

We call rank-1 vector fields linear transformations, rank-2 vector fields quadratic changes of variable and

so on.
22Examples include the Gaussian, Chern-Simons and Yang-Mills models.
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4.3.1 Linear symmetries of Gaussian

The gaussian Λ-matrix model is defined by the action tr S(A) = tr 1
2CijAiAj where Cij is

a positive real symmetric ‘covariance’ matrix. We seek infinitesimal linear transformations

δAi = vj
i Aj that leave the action as well as measure invariant in the large N limit. In

section 3.2 we found that the measure preserving transformations are the traceless ones

vi
i = 0 forming the Lie algebra slΛ(R). Here we find that the vector fields vj

i that preserve

both the action and measure in the large-N limit are those that satisfy vi
m +vj

kC
kiCjm = 0.

This is the condition that vj
i be an orthogonal transformation with respect to a metric given

by the covariance. In particular, for a unit covariance Cij = δij , these are the antisymmetric

matrices.

For the expectation value of the Gaussian action to be invariant at N = ∞, we need

LvS(G) = vj
kC

klGlj =
1

2
(ṽjl + ṽlj)Glj = 0 ∀ cyclic and hermitian Glj . (4.5)

We used Ckl and its inverse Clm to raise and lower indices, ṽjl = vj
kC

kl, ṽjlClm = vj
m,

CklClm = δk
m. The condition for a symmetry of the action is that ṽ be anti-symmetric

ṽjl + ṽlj = 0. (4.6)

If ṽ is anti-symmetric, then v is automatically traceless. So action preserving linear trans-

formations are automatically measure preserving. To see this we first rewrite antisymmetry

of ṽ as a condition on v by lowering an index vi
m + vj

kC
kiCjm = 0. Taking the trace we

get vi
i + vj

kC
kiCji = 0 which implies vi

i = 0. Thus, the non-anomalous linear symmetries of

the gaussian are given by vector fields vj
i L

i
j that are anti-symmetric after raising an index

with Cik. In other words, the orthogonal Lie algebra with respect to the metric given

by the covariance matrix. In particular, the dimension of the space of linear symmetries
1
2 (Λ2 − Λ), does not change as we move around in the space of non-singular symmetric

covariance matrices.

Example 1. Consider a gaussian two matrix model with diagonal covariance Cij =

diag(a, b). Then the condition that δAi = vj
i Aj be action preserving in the large-N limit

is v1
1 = v2

2 = 0 and av2
1 + bv1

2 = 0. These are the infinitesimal orthogonal transformations

with respect to the ‘metric’ diag(a, b). Such vj
i are traceless and thus measure preserving

as well.

Example 2. If the covariance of a gaussian Λ-matrix model is a multiple of the identity,

then the action preserving transformations are the anti-symmetric matrices (vj
i + vi

j = 0)

which form the orthogonal Lie algebra with respect to the metric δij . Such matrices are

clearly traceless so that the non-anomalous linear symmetries form the Lie algebra o(Λ).

4.3.2 Linear symmetries of Chern Simons model

The Chern-Simons 3-matrix model has action

tr S(A) =
2iκ

3
εijkAiAjAk = 2iκ tr A1[A2, A3] = 2iκ tr (A123 − A132). (4.7)
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So the coupling tensors are Sijk = 2iκ
3 εijk. We seek all vector fields Lv = vI

i L
i
I for which

the change in ( 1
N ×) the action vanishes for N = ∞ (second equality requires relabeling of

indices)

LvS
JGJ = vI

i S
J1iJ2GJ1IJ2 = 2iκvI

i ε
ijkGIjk = 0. (4.8)

vI
i are real and have no symmetry in I. They must satisfy vI

i ε
ijkGIjk = 0 for all cyclic and

hermitian GK . Specializing to linear transformations Ai → Ai + vj
i Aj , they must satisfy

∑

1≤i,j,k,l≤3

vl
iε

ijkGljk = 0. (4.9)

We could also arrive at this condition by making a linear change of variables in the action

δ
1

N
tr S =

tr

N
(vi

1Ai23 + vi
2A1i3 + vi

3A12i − vi
1Ai32 − vi

2A13i − vi
3A1i2) = 0. (4.10)

Writing out all the terms and using cyclicity of GK this condition simplifies dramatically

to

3
∑

i=1

vi
i (G123 − G132) = 0. (4.11)

Taking real and imaginary parts23 we get the single condition vi
i = G123 = 0, which must be

satisfied for all = G123. We conclude that vj
i preserves the CS action iff it is traceless vi

i = 0.

We recall (section 3.2) that traceless linear transformations also preserve the matrix model

measure. Thus, the CS model has a maximal family of linear non-anomalous symmetries.

From section 3.4 we know that the space of traceless real vj
i is the Lie algebra sl3(R),

an 8 dimensional space. The free parameters can be chosen as v2
1 , v

3
1 , v

1
2 , v

3
2 , v

1
3 , v

2
3 , v

1
1 and

v2
2 with v3

3 = −v1
1 − v2

2 . The corresponding symmetries are an 8-parameter family of vector

fields

Lv = v2
1L

1
2 + v3

1L
1
3 + v1

2L
2
1 + v3

2L
2
3 + v1

3L
3
1 + v2

3L
3
2 + v1

1L
1
1 + v2

2L
2
2 − (v1

1 + v2
2)L

3
3. (4.12)

4.3.3 Linear symmetries of Yang-Mills model

For 2 or more matrices and a real symmetric invertible metric gij , the YM model has action

tr S(A) = − 1
4α tr [Ai, Aj ][Ak, Al]g

ikgjl. The expectation value of the change in the action

under a linear transformation δAi = vj
i Aj in the large-N limit can be written as

LvS(G) = −
1

α
Gjklm

(

vm
i gikgjl − vk

i gilgjm − vj
i g

imgkl + vk
i gimgjl

)

(4.13)

To identify symmetries of the action, we must select independent Gjklm and set their

coefficients to zero. First we restrict the sum to words jklm up to cyclic symmetry. Thus

δS = 0 iff

−
1

α

∑

jklm/cyc

GjklmRjklm = 0 (4.14)

23vI
i ∈ R. Hermiticity & cyclicity ⇒ G∗

123 = G132 which ⇒ <G123 = <G132 and =G123 = −=G132.
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where the cyclically symmetric tensor Rjklm is

Rjklm =

[

vj
i (2g

ilgkm − gimgkl − gikglm) + cyclic(j → k → l → m → j)

]

= (ṽ(jl)gkm + ṽ(km)gjl) −
1

2

[

ṽ(jm)gkl + ṽ(jk)glm + ṽ(kl)gmj + ṽ(lm)gjk

]

. (4.15)

Here we have used the metric to raise and lower indices ṽjl = vj
i g

il and vj
m = ṽjlglm and

denoted the symmetric projection by ṽ(jk) = 1
2(ṽjk + ṽkj). We have still to account for the

hermiticity relations <Gjklm = <Gjklm, =Gjklm = −=Gjklm. Now, vj
i and gkl are real and

<Gjklm and =Gjklm are independent of each other, so we have LvS(G) = 0 iff

∑

jklm/cyc

Rjklm<Gjklm = 0 and
∑

jklm/cyc

Rjklm=Gjklm = 0. (4.16)

Now we must collect the coefficients of <Gjklm and <Gjklm and similarly for the imaginary

parts and restrict the sum to avoid jklm if jklm has already appeared. Two possibilities

arise: either jklm may be obtained from jklm via cyclic permutations or not. In the former

case, =Gjklm vanishes and the coefficient of <Gjklm must vanish for v to be a symmetry

of the action. Thus we get Rjklm = 0 if jklm is cyclically related to jklm. On the other

hand, if jklm is not cyclically related to jklm, then collecting coefficients we have

∑

jklm/cyc,revers

<Gjklm(Rjklm + Rjklm) = 0 and
∑

jklm/cyc,revers

=Gjklm(Rjklm − Rjklm) = 0

(4.17)

Now the sums are over truly independent moments. Setting coefficients to zero we get the

pair of conditions Rjklm + Rjklm = 0 and Rjklm − Rjklm = 0, whose simultaneous solution

is again Rjklm = 0. We conclude that the necessary and sufficient conditions for vj
i to be

a symmetry of the action are Rjklm = 0. By contracting with the non-singular metric to

get a scalar,

Rjklmgjlgkm = (6Λ − 4)vi
i . (4.18)

Since Λ 6= 2/3, if v is action preserving (Rjklm = 0), then tr v = 0 and v is automatically

measure preserving. Thus, non-anomalous linear symmetries of the Yang-Mills model in

the large-N limit are characterized by those v for which the tensor Rjklm vanishes. It

suffices to check this condition for each word jklm up to cyclic permutations and order

reversals. Since Rjklm depends only on the symmetric projection of ṽjk, the anti-symmetric

part of ṽjk is unconstrained! Thus, a sufficient condition for ṽij to be a non-anomalous

symmetry is that it be anti-symmetric. However, this is not a necessary condition; there

are traceless24 ṽij with non-trivial symmetric projections for which Rjklm = 0.

24 tr v = vj
j = ṽjlglj .
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Example. We will demonstrate this using the simplest non-trivial example, the 2-matrix

Yang-Mills model with flat metric gij = δij . In this case, the action reads tr S(A) =

− 1
2α tr [A1, A2]

2. Then vi
j = ṽikδkj . The antisymmetric part of ṽ automatically satisfies

Rjklm = 0, so let us suppose that ṽij is a traceless symmetric tensor, i.e. ṽ(ij) = ṽij and

ṽ11 + ṽ22 = 0. Then the six independent components of Rjklm are all identically zero

R1111 = 2(ṽ11 + ṽ11) − 4ṽ11 = 0, R2222 = 2(ṽ22 + ṽ22) − 4ṽ22 = 0,

R1112 = 2ṽ12 − (ṽ12 + ṽ12) = 0, R1122 = −(ṽ11 + ṽ22) = 0,

R1212 = 2(ṽ11 + ṽ22) = 0, R1222 = 2ṽ12 − (ṽ12 + ṽ12) = 0. (4.19)

So every symmetric traceless ṽjk satisfies Rjklm = 0. We conclude that for Λ = 2 and

gij = δij , the Lie algebra of non-anomalous symmetries is sl2(R).

4.3.4 Linear symmetries of Gaussian + Yang-Mills

For Λ ≥ 2 let us consider a Gaussian + Yang-Mills matrix model with action

tr S(A) =
1

2
Cij tr AiAj −

1

4α
tr [Ai, Aj ][Ak, Al]g

ikgjl. (4.20)

The simplest case which we will focus on is the two matrix model with flat metric gij = δij

and with covariance a multiple of the identity Cij = m2δij . In this case the action reads

tr S(A) = tr
m2

2
(A2

1 + A2
2) −

1

2α
tr [A1, A2]

2. (4.21)

We know (sections 4.3.1, 4.3.3) that linear non-anomalous symmetries of the gaussian and

Yang-Mills parts constitute the o(2) and sl2(R) Lie algebras respectively. Their intersection

is o(2), which is automatically a non-anomalous symmetry algebra of (4.21). But these

must be all the linear symmetries, since there can be no cancelation between LvSgauss(G)

which involves two point correlations and LvSY M (G) which involves 4-point correlations

exclusively. The corresponding conclusion for Λ matrix models (again with Cij a multiple

of identity and gij = δij) is that the non-anomalous linear symmetries form the orthogonal

Lie algebra o(Λ).

4.4 Examples of non-linear non-anomalous symmetries

We exhibit homogeneous quadratic infinitesimal changes of variable δAi = vjk
i AjAk which

leave both action and measure invariant in the large-N limit. In particular, we consider the

2-matrix gaussian with unit covariance, the 3-matrix Chern Simons model, the 2-matrix

commutator-squared Yang-Mills model and the 2-matrix Gaussian+YM model. We find

a 2, 18, 6 and 2 dimensional family of quadratic non-anomalous symmetries in these cases.

Moreover, we show that quadratic symmetries do not form a Lie algebra by themselves.

We demonstrate how to obtain non-trivial non-anomalous cubic symmetries via their Lie

brackets.
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4.4.1 Quadratic symmetries of the Gaussian model

Under an infinitesimal quadratic change of variable δAi = vjk
i Ajk, the change in action of

a gaussian model with unit covariance is

δS = tr δijδAiAj = tr δijvmn
i Amnj = tr vmn

i Amni. (4.22)

Specializing to a 2-matrix model in the large-N limit and taking expectation values,

LvS(G) = v11
1 G111 + (v11

2 + v12
1 + v21

1 )G112 + (v12
2 + v12

2 + v21
2 )G221 + v22

2 G222. (4.23)

where we have collected the coefficients of the four independent third rank moments, which

are all real after accounting for cyclicity and hermiticity. Thus LvS = 0 implies

v11
1 = v22

2 = 0, v11
2 = −v12

1 − v21
1 , v22

1 = −v12
2 − v21

2 . (4.24)

To be non-anomalous, v must be volume preserving as well: vij
i + vji

i = 0, which im-

plies (3.35). The solution of this system of linear equations is a two parameter family

v11
1 = v22

2 = v11
2 = v22

1 = 0, v12
1 = −v21

1 = a, v12
2 = −v21

2 = b. (4.25)

Thus, the non-anomalous quadratic symmetries of the Gaussian model with unit covariance

are

δA1 = a [A1, A2] , δA2 = b [A1, A2] , a, b ∈ R. (4.26)

They correspond to the vector fields Lua,b
= a(L1

12 −L1
21) + b(L2

12 −L2
21). The Lie bracket

of Lua,b
and Luc,d

is not a quadratic vector field. Rather, it is a cubic non-anomalous vector

field

[Lua,b
, Luc,d

] = (ad − bc)

{

[L1
12, L

2
12] − [L1

12, L
2
21] − [L1

21, L
2
12] + [L1

21, L
2
21]

}

= (ad − bc)(L2
122 − L1

112 − 2L2
212 + 2L1

121 + L2
221 − L1

211). (4.27)

It corresponds to the one parameter family of infinitesimal changes of variable

δA1 = (ad − bc)[A1, [A2, A1]], δA2 = (ad − bc)[[A1, A2], A2], ad − bc ∈ R. (4.28)

There could, of course, be more cubic non-anomalous symmetries that do not arise as Lie

brackets of quadratic symmetries. It is satisfying that our point of view tells us something

interesting even about the gaussian matrix model.

4.4.2 Quadratic symmetries of Chern-Simons

For a homogeneous quadratic change of variable, the change in the expectation value of

the Chern-Simons action tr S(A) = 2iκ
3 εijkAijk in the large-N limit is

LvS(G) = 2iκvlm
i εjkiGlmjk. (4.29)
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To account for cyclicity of Glmjk we cyclically symmetrize the coefficient. Let

T lmjk = vlm
i εjki + vkl

i εmji + vjk
i εlmi + vmj

i εkli.

Then, LvS(G) = (iκ/2)
∑

lmjk/∼

T lmjkGlmjk (4.30)

where the sum is restricted equivalence classes of lmjk under cyclic permutations. Ac-

counting for hermiticity, we get that LvS(G) = 0 iff

∑

lmjk/∼′

(T lmjk + T lmjk)<Glmjk = 0; and
∑

lmjk/∼′

(T lmjk − T lmjk)=Glmjk = 0 (4.31)

where now the sums are further restricted modulo order reversal. Now we may set the

coefficients to zero and after adding and subtracting we find

LvS(G) = 0 ⇔ T lmjk = 0 (4.32)

where the condition is imposed for all words lmjk modulo cyclic permutations. There are

c(n = 4,Λ = 3) = 24 such words for a 3-matrix model. For 9 of these words (1111), (2222),

(3333), (1112), (1222), (2333), (2223), (3111) and (3331), T lmjk identically vanishes. The

equations T lmjk = 0 for each of the remaining 24 − 9 = 15 words are listed below. The

words are indicated in parenthesis to the left of the equations

(1212) v12
3 = v21

3 (1123) v11
1 + v31

3 + v12
2 = 0 (3312) v33

3 + v23
2 + v31

1 = 0

(1122) v12
3 = v21

3 (1132) v11
1 + v13

3 + v21
2 = 0 (3321) v33

3 + v13
1 + v32

2 = 0

(2323) v23
1 = v32

1 (1213) v13
3 + v21

2 − v12
2 − v31

3 = 0 (3132) v32
2 + v13

1 − v31
1 − v23

2 = 0

(2233) v23
1 = v32

1 (2231) v22
2 + v12

1 + v23
3 = 0

(3131) v31
2 = v13

2 (2213) v22
2 + v21

1 + v32
3 = 0

(3311) v31
2 = v13

2 (2321) v21
1 + v32

3 − v23
3 − v12

1 = 0. (4.33)

Equations for volume preserving vector fields are vij
i + vji

i = 0, or explicitly

v11
1 + v21

2 + v31
3 + v11

1 + v12
2 + v13

3 = 0, v12
1 + v22

2 + v32
3 + v21

1 + v22
2 + v23

3 = 0

and v13
1 + v23

2 + v33
3 + v31

1 + v32
2 + v33

3 = 0. (4.34)

We see that (1123) + (1132), (2231) + (2213) and (3321) + (3312) are equivalent to these

equations. So quadratic symmetries of the CS action are also volume preserving. Moreover

(1132) − (1123) = (1213); (2213) − (2231) = (2321); (3321) − (3312) = (3132).(4.35)

So equations (1213), (2321), (3132) may be discarded. And equations (1122), (2233), (3311)

are redundant. Thus we are left with 15 − 6 = 9 independent equations for 33 = 27

unknowns vlm
i , leaving an 18 parameter family of non-anomalous quadratic symmetries of

the CS model.
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4.4.3 Quadratic symmetries of Yang-Mills model

The action of the two matrix Yang-Mills model may be written S = − 1
2αtr[A1, A2]

2 =
1
α tr (A1122 − A1212). Under an infinitesimal homogeneous quadratic change of variables

δAi = vjk
i Ajk the change in the action − 1

αtr {([δA1, A2] + [A1, δA2])[A1, A2]} becomes, in

the large-N limit

−αLvS(G) = vjk
i Li

jk(G1212 − G1122) = vjk
i (δI1iI2

1212 GI1jkI2 − δI1iI2
1122 GI1jkI2)

= G11212(2v
11
1 + v12

2 + v21
2 ) − G11122(2v

11
1 + v21

2 + v12
2 )

+G12122(2v
22
2 + v12

1 + v21
1 ) − G11222(2v

22
2 + v12

1 + v21
1 ). (4.36)

Since the moments that appear are independent, we set the coefficients to zero:

2v11
1 + v12

2 + v21
2 = 0 and 2v22

2 + v12
1 + v21

1 = 0. (4.37)

But these conditions are identical to those for a quadratic vector field to preserve the

measure of a 2-matrix model (3.35). Since the above two equations are independent, we

have a 23 − 2 = 6 parameter family of non-anomalous homogeneous quadratic symmetries

of the 2-matrix Yang-Mills model given in (3.36). It is remarkable that every measure

preserving linear and quadratic vector field also preserves the action of the YM 2-matrix

model and CS 3-matrix model in the large-N limit. We wonder if this continues to hold

for higher rank symmetries or more matrices.

Cubic symmetry. The Lie bracket of two non-anomalous rank-2 vector fields (if 6= 0)

is a rank-3 non-anomalous vector field (since they form a Lie algebra). This is a way of

generating new symmetries. Consider two quadratic symmetries of the YM model

Lv = aL2
21 −

a

2
L1

11 and Lu = bL1
22. (4.38)

which correspond to the choices v21
2 = a, v11

1 = −a
2 while all other vjk

i vanish, and u22
1 = b

and all other ujk
i vanish. Their commutator is

[Lv, Lu] = ab

{

[L2
21, L

1
22] −

1

2
[L1

11, L
1
22]

}

= ab

{

L1
212 − L2

222 +
3

2
L1

221 +
1

2
L1

122

}

.(4.39)

The non-vanishing components of the resulting non-anomalous cubic symmetry are

w212
1 = ab, w221

1 =
3

2
ab, w122

1 =
1

2
ab, and w222

2 = −ab. (4.40)

One can also check explicitly that this defines a simultaneous symmetry of the action and

the measure. For example, the change in action is

δ tr S = ab tr

{(

[A212 +
3

2
A221 +

1

2
A122, A2] − [A1, A222]

)

[A1, A2]

}

= 0. (4.41)

The conditions for a homogeneous cubic vector field to be volume preserving are

wmin
i + wnim

i = 0 and wimn
i + winm

i + wmni
i + wnmi

i = 0, (4.42)

and wjkl
i satisfy these conditions as well.
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4.4.4 Quadratic symmetries of 2-matrix Gaussian + YM model

Having determined homogeneous quadratic symmetries of gaussian and YM models, we get

those for gaussian+YM model tr S(A) = tr [m
2

2 (A2
1 + A2

2) −
1
2α [A1, A2]

2] by taking their

intersection. For, there can be no cancelation between rank 3 & 5 tensors from the action of

a homogeneous quadratic vector field on the gaussian and YM terms. Since every quadratic

measure preserving vector field also preserves the YM action, the intersection is the same

family δA1 = a[A1, A2], δA2 = b[A1, A2], a, b ∈ R as for the gaussian (section 4.4.1).

5. Supplementing loop equations with Ward identities

5.1 Gaussian

LE of the Gaussian are not underdetermined. We do not need the WI in this case. Nev-

ertheless, the Gaussian does have non-anomalous symmetries (sections 4.3.1, 4.4.1), which

lead to non-trivial WI. The LE along with WI are an overdetermined system in this case.

Nevertheless, the WI are consistent with the LE and there is no contradiction, as we

have shown in section 2. To illustrate this, consider a Λ-matrix model with unit covari-

ance tr S(A) = 1
2δijAiAj. The unique solution to the LE states that the odd rank

correlations vanish and the even ones GK are determined by a planar version of Wick’s

theorem involving a sum over non-crossing partitions of K into pairs of indices. For exam-

ple Gij = δij , Gijkl = δijδkl + δilδjk etc. The WI corresponding to linear non-anomalous

symmetries are (vk
j are anti-symmetric)

LvGK = vk
j Lj

kGK =

n
∑

i=1

vk
j δj

ki
Gk1...ki−1kki+1...kn =

n
∑

i=1

vk
ki

Gk1...ki−1kki+1...kn = 0. (5.1)

Thus, the moments must be o(Λ) invariant tensors. We can check that these WI are consis-

tent with the LE. For example, with n = 1 we get the WI vk
l Gk = 0, for all antisymmetric

vk
l . But there are anti-symmetric vj

k with non-vanishing determinant, and Gj must lie in

their kernel which is trivial. So Gj = 0, as implied by the LE. The WI for odd n are

trivially satisfied by solutions to the LE, since odd rank moments vanish. WI for n = 2 are

vk
k1

Gkk2 + vk
k2

Gk1k = 0, ∀ antisymmetric vk
l . (5.2)

For Gij = δij, the l.h.s. becomes vk2
k1

+ vk1
k2

which vanishes on account of anti-symmetry of

v. Similarly we can check that the WI are consistent with the LE for n = 4, 6, · · ·.

We could do the same for quadratic symmetries. Let us consider the two-matrix

gaussian model. The WI LvGK = 0 following from quadratic non-anomalous symmetries

(section 4.4.1) Lv = a(L1
12 − L1

21) + b(L2
12 − L2

21) for arbitrary real a, b are

δL1M
K GL12M = 0 and δL2M

K GL21M = 0. (5.3)

These WI are consistent with the LE (for |K| ≤ 4, that we checked, these WI are conse-

quences of cyclicity and do not contain new information). For more nontrivial use of the

WI we must progress to non-gaussian multi-matrix models whose LE are underdetermined.
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5.2 Gaussian plus Yang-Mills

The matrix integrals for correlations of the 2-matrix Gaussian + YM model, whose action

is

tr S(A) = tr

[

m

2
(A2

1 + A2
2) −

1

2α
[A1, A2]

2

]

, (5.4)

converge. Recall that the commutator of hermitian matrices is anti-hermitian, and the

square of an anti-hermitian matrix is non-positive. Thus, the quartic term is non-negative.

The quadratic term ensures that as any matrix element goes to ±∞, the action goes to

+∞. Thus, the Boltzmann weight e−N tr S vanishes at least exponentially fast as any matrix

element goes to ±∞. Thus, all polynomial observables have finite expectation values. From

this we conclude that the LE and WI are rigorously valid. In section 2.2 we obtained the LE

for |I| < 4. They left a number of correlations undetermined. In section 4.3.4 we found that

linear non-anomalous symmetries of this model form the o(2) Lie algebra parameterized

by vi
j such that v1

1 = v2
2 = 0 and v1

2 = −v2
1 . The corresponding WI, which we will use to

supplement the LE, read TGK = 0 for all words K, where T = L2
1 − L1

2. These are listed

in appendix B for moments of rank up to 4. They imply that all Gi vanish. The only Gij

that might be non-vanishing are G11 = G22. All 3-point Gijk vanish. 4-point correlations

vanish except possibly G1111, G2222, G1212, G1122 and their cyclic permutations. They must,

however, satisfy the relations G1111 = G2222 and G1111 = 2G1122 + G1212. Some of these

conditions could also have been got from the LE, (2.2). We need one more condition on

rank-2 moments and two more conditions on rank-4 moments to determine all moments of

rank ≤ 4. The LE for |I| = 1 gives one new condition

G11 = 1 +
1

α
(2G1212 − 2G1122). (5.5)

The LE for |I| = 2 (section 2.2) relate 3 and 5 point correlations. Using the fact that

all 3-point correlations vanish, they tell us that G11212 = G11122 and G12122 = G11222.

Supplementing these LE with the WI for 5-point correlations TGijklm = 0 ∀ ijklm (which

we do not list explicitly), we are able to conclude that all rank-5 correlations vanish.

Thus far, we have found that the only correlations with rank ≤ 5 that could be non-

vanishing are G11, G22, G1111, G2222, G1212 and G1122, up to cyclic permutations. We have

found 4 relations among these 6 unknowns:

G11 = G22, G1111 = G2222, G1111 = 2G1122 + G1212, G11 = 1 +
1

α
(2G1212 − 2G1122) (5.6)

Thus, by use of the WI, we have reduced the underdeterminacy of the LE. We could proceed

further in this manner. The LE for |I| = 3 relate rank-4 and rank-6 moments, while the

WI for rank-6 moments give further conditions on rank-6 moments. We could also look

for additional conditions using the WI from quadratic symmetries found in section 4.4.4,

but we postpone that. Our purpose here was only to illustrate the general framework

we have developed. In a separate paper, we hope to return to a more thorough study

of the correlations of this model using the LE and WI and their comparison with other

approaches [26, 27] or monte-carlo simulations [28].
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5.3 Chern-Simons 3-matrix model

The CS 3-matrix model has action tr S(A) = 2iκ
3 εijk tr Aijk = 2iκ tr A1[A2, A3]. We

expect its matrix integrals to diverge. To see this, go to a basis where A2 is diagonal,

then the action is independent of the diagonal elements of A3, due to the commutator. So

integration over the diagonal elements of A3 would diverge. Our derivation of the LE and

WI holds at best formally for this model. We do not know whether the LE and WI are a

consistent system for this action. Nevertheless, we consider them formally to illustrate the

general framework. We find no inconsistency, at least for correlations up to rank 3. The LE

of the CS 3-matrix model are under determined (section 2.2). WI corresponding to non-

anomalous linear symmetries (4.12) are obtained by imposing the conditions LvGK = 0

for all K and traceless vi
j:

vj
i δ

K1iK2
K GK1jK2 = 0 ∀ traceless vi

j. (5.7)

These are the conditions that GK be (cyclic and hermitian) invariant tensors of SL3(R).

We will work out the WI explicitly for |K| = 0, 1, 2, 3. For K empty, this is a vacuous con-

dition, so put K = k to get the WI vj
kGj = 0 for all traceless vj

k. There are traceless vj
k with

non-vanishing determinant, and Gj must lie in the kernel of such linear transformations.

But this kernel is trivial, so Gj = 0. For K = kl we get

vj
l Gkj + vj

kGjl = 0 ∀ traceless v. (5.8)

Putting k = l = 1 we get v1
1G11 + v2

1G12 + v3
1G13 = 0. But this must hold for all real

v1
1 , v

2
1 , v

3
1 so that G11 = G12 = G13 = 0. Putting k = l = 2 we get G21 = G22 = G23 = 0.

Finally putting k = l = 3 we get v1
3G31 + v2

3G32 − (v1
1 + v2

2). Again v1
3 , v

2
3 , v

1
1 , v

2
2 are freely

specifiable so that G31 = G32 = G33 = 0. From this we conclude that all Gij = 0. This is

of course consistent with the remaining WI gotten by putting k = 1, l = 2 etc since Gij = 0

is an obvious solution of the homogeneous system vj
l Gkj + vj

kGjl = 0.

As for WI25 for rank-3 correlations,26 we set K = klm and get

vj
kGjlm + vj

l Gkjm + vj
mGklj = 0 ∀ traceless v. (5.10)

k = l = m = 1 gives v1
1G111 + v2

1G112 + v3
1G113 = 0 whence G111 = G112 = G113 = 0.

Similarly, putting k = l = m = 2 and k = l = m = 3 we get G122 = G222 = G223 =

G133 = G233 = G333 = 0. The only remaining undetermined rank-3 correlations are G123

and G132. The remaining WI are either vacuous (e.g. k = 1, l = 2,m = 3) on account of v

being traceless or (e.g. k = l = 1,m = 2) give G123 + G132 = 0.

25Li
i (no sum over i) is a number operator, it counts the number of i’s in a given moment. For example,

consider GIiJiKiL, where none of the multi-indices I, J, K, L contain an i. Then

Li
iGIiJiKiL = GIiJiKiL + GIiJiKiL + GIiJiKiL = 3GIiJiKiL. (5.9)

The number operators commute [Li
i, L

j
j ] = 0. Thus

P

i Li
i measures the rank of a given moment. This

can be used to get most of the rank-3 moments of the CS model by employing WI involving L1
1 − L2

2 and

L1
1 − L3

3.
26Accounting for cyclicity and hermiticity, the space of rank-3 tensors is 11 dimensional, see appendix D.
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To summarize, the WI due to linear non-anomalous symmetries imply that all corre-

lations of rank ≤ 3 vanish except for G123 and G132 (and their cyclic permutations), and

these are related by the WI G123 + G132 = 0. WI remedy the underdeterminacy of LE

of the CS model. The only non-trivial condition from the LE was (see section 2.2.2 of

ref. [20])

=(G123 − G132) = −
1

2κ
(5.11)

This, along with the WI G123 + G132 = 0 now allows us to determine all correlations up

to rank 3, the only non-vanishing ones (up to cyclic symmetry) are27

G123 =
1

4iκ
and G132 = −

1

4iκ
(5.12)

We checked that this result is consistent with the WI corresponding to quadratic non-

anomalous symmetries obtained in section 4.4.2. So at least up to rank-3 moments, the WI

cure the underdeterminacy problem of the LE! We could proceed in this manner to higher

rank correlations.

5.4 2-matrix Yang-Mills: a cautionary tale

The matrix integrals for correlations of the YM 2-matrix model tr S(A) = − 1
2α tr [A1, A2]

2

do not converge [25] due to a similar argument as given for the CS (section 5.3). Thus,

our derivation of the WI and LE is not strictly valid. We cannot be certain that they form

a consistent system. In fact, we find that the WI and LE for this model do not form a

consistent system when considering rank-4 correlations. Despite several checks, we could

find no calculational error. We do not know the deeper reason for this inconsistency, but

suspect it could have something to do with the lack of convergence of matrix integrals

invalidating our derivation of the WI and LE. Thus, it is probably good to be cautious in

formal use of the WI and LE.

The LE of the YM 2-matrix model are underdetermined, (section 2.2). Recall that

the LE do not determine any moments of rank 1, 2 or 3. Here, the WI come to the rescue.

Recall (4.3.3), that the non-anomalous linear symmetries of this model form the Lie algebra

sl2(R), spanned by L1
1 − L2

2, L
1
2, L

2
1. The WI LvGK = 0 for |K| ≤ 3 suffice to determine

all 1, 2, and 3 point correlations, and imply they are all zero. Let us also consider WI for

moments of rank 4:

(L1
1 − L2

2)G1111 = 4G1111 = 0, (L1
1 − L2

2)G2222 = −4G2222 = 0,

(L1
1 − L2

2)G1112 = 2G1112 = 0, L1
2G1112 = G1212 + 2G1122 = 0,

L1
2G1212 = 2G2221 = 0 ⇒ G2221 = 0. (5.13)

While the WI determine many rank-4 correlations, they give only one relation between

G1212 and G1122. To fix them we use the simplest conditions coming from the first of the

two LE

I = 1 : 2G1212 − 2G1221 = −α ; I = 2 : 2G2212 − 2G2221 = 0. (5.14)

27Hermiticity and cyclicity mean G∗
123 = G132 which implies <G123 = <G132 and =G123 = −=G132
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The second equation is vacuous, but thanks to the WI we see G1222 = 0. As for the first

equation, WI provides us with the condition G1212 + 2G1122 = 0. So we get

G1212 = −
α

3
and G1122 =

α

6
. (5.15)

However, this is not consistent with the WI for non-anomalous quadratic symmetries (sec-

tion 4.4.3). In particular the WI obtained from linear symmetries together with

(

L1
12 −

1

2
L2

22

)

G112 = G1212 +
1

2
G1122 = 0 (5.16)

implies G1212 = G1122 = 0, which is a contradiction.

6. Some outstanding questions

A summary and discussion of the results of this paper was given in the introduction.

Here, we list some questions raised by our work. (1) We have only addressed the exact

determination of normalized correlations in large-N matrix models using the LE and WI.

But what about the partition function or free energy? (2) It is interesting to know whether

the LE and WI together determine all single-trace correlations in the large-N limit. (3) We

have only discussed infinitesimal non-anomalous symmetries. Many models also possess

discrete non-anomalous symmetries, which lead to useful relations among correlations.

Some of these relations are actually a consequence of the LE or WI. But in general, it

may be necessary to supplement the LE and WI by conditions from discrete symmetries.

(4) Detailed study of LE and WI of specific multi-matrix models should clarify whether

we need additional conditions to solve for all correlations. (5) It is interesting to identify

matrix models with a maximal family of non-anomalous symmetries. Interestingly, we

found that the 3-matrix CS model and the 2-matrix commutator-squared YM models each

possesses a maximal family of linear and quadratic non-anomalous symmetries. (6) It

is interesting to classify the solutions to the simplest WI. For example, the correlations

that satisfy WI for linear symmetries of the Gauss+YM model must be invariant cyclic

hermitian tensors of the orthogonal Lie algebra. What is the general form of such tensors?

(7) We observed that for n > 1, Lie brackets of rank n non-anomalous vector fields are

rank n + 1 non-anomalous vector fields, provided they are non-vanishing. It would be

interesting to study this Lie algebra of non-anomalous symmetries in specific examples.

Can it be infinite dimensional? If so, might the model be integrable in some sense? (8)

We wonder whether the full gauge fixed Yang-Mills theory in the large-N limit has any

additional non-anomalous symmetries besides Poincare invariance and BRST invariance.

Our work indicates that such symmetries can be far from obvious and highly non-linear.
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A. Alternative derivation of SDE preserving hermiticity

Consider the change of variables corresponding to translation by a constant Hermitian

matrix ε

(Ai)
a
b → (Ai)

a
b + εa

b , and (Aj)
a
b → (Aj)

a
b for j 6= i (A.1)

in the integral ([dA] =
∏

k dAk is the Lebesgue measure on independent matrix elements)

I =

∫

[dA] (AI)
a
b ΦK e−NtrSJAJ . (A.2)

Here ΦK = tr
N AK . The value of the integral should be unaltered under this change of

variables28

δI = εc
d

∫

[dA] δI1iI2
I (AI1)

a
c (AI2)

d
b ΦK e−N tr SJAJ

+ εc
d

∫

[dA] (AI)
a
b δLiM

K

1

N
(AML)dc e−N tr SJAJ

− εc
d

∫

[dA] (AI)
a
b ΦK NSJδJ1iJ2

J (AJ2J1)
d
c e−N tr SJAJ = 0 (A.3)

where we also used the translation invariance of the measure. Since this holds for arbitrary

Hermitian ε we conclude 29

δI1iI2
I 〈(AI1)

a
c (AI2)

d
bΦK〉 +

1

N
δLiM
K 〈(AI)

a
b (AML)dc〉 = NSJ1iJ2〈(AI)

a
bΦK(AJ2J1)

d
c〉. (A.4)

Contracting a with c and b with d, and dividing both sides by N2 we get

δI1iI2
I 〈ΦI1ΦI2ΦK〉 + δLiM

K

1

N2
〈ΦLIM 〉 = SJ1iJ2〈ΦJ1IJ2ΦK〉. (A.5)

Since this must hold for every I and i, it is equivalent to the equations

vI
i δ

I1iI2
I 〈ΦI1ΦI2ΦK〉 + vI

i δ
LiM
K

1

N2
〈ΦLIM〉 = vI

i S
J1iJ2〈ΦJ1IJ2ΦK〉 ∀ vI

i ∈ R. (A.6)

In a completely analogous fashion, we repeat this calculation with several insertions

ΦK1 · · ·ΦKn and get the Schwinger-Dyson equations obtained earlier in (2.8).

28The following formula is useful:
∂(AI)a

b

∂(Ai)
c

d

= δI1iI2
I (AI1)

a
eδd

fδe
c(AI2)

f
b = δI1iI2

I (AI1)a
c (AI2)d

b . Contracting a

with b one gets ∂ tr AI

∂(Ai)
c

d

= δI1iI2
I (AI1)

a
c (AI2)

d
a = δI1iI2

I (AI2I1)d
c .

29It is shown in Adler’s book [29] page. 26 that if tr (εH)=0 for all Hermitian ε then H = 0
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A.1 Other possible changes of variables in matrix integrals

LE are underdetermined, so do the GI satisfy other equations? The WI are such equations

and with the LE, may go a long way towards fixing GI . Here we consider two other types

of changes of variable in matrix integrals to see if they give new equations. However, we

do not find any.

Consider an infinitesimal change δAi = vI
i AI where vI

i is a Hermitian matrix for each

I & i; previously they were real numbers. Conditions for invariance of partition function

are

−NSI1iI2 tr (AJI2I1v
J
i ) + δJ1jJ2

J tr (vJ
j AJ1) tr AJ2 = 0 (A.7)

Since these must hold for arbitrary matrix elements [vI
i ]

a
b we get

−NSI1iI2(AJI2I1)
a
b + δJ1jJ2

J (AJ1)
a
b tr AJ2 = 0 (A.8)

But these are not equations for trace invariants. To get equations for GI , we must take a

trace, divide by N2 and take expectation values. But this leads to the LE derived before.

Next we consider an infinitesimal change δAi = [vI
i , AI ] with arbitrary hermitian ma-

trices vI
i . These types of change of variable do not appear in BRST transformations but do

appear in gauge transformations Aµ → Aµ + ∂µΛ + [Aµ(x),Λ(x)] . Invariance of partition

function implies

δI1jI2
I tr (vI

i AI1) tr AI2 − δI1jI2
I tr AI1 tr (vI

i AI2) + SI1jI2[AI2I1, AI ] = 0. (A.9)

Using the arbitrariness of vI
i we get

δI1jI2
I (AI1)

a
b tr AI2 − δI1jI2

I tr AI1(AI2)
a
b = SI1jI2[AI2I1, AI ]

a
b . (A.10)

As before, we must take a trace to get an equation for the GI , but in fact we get a triviality.

Thus, we have not found any equations for GI in addition to the LE and WI.

B. WI for Gaussian+YM model

Below is a list of Ward identities TGK = 0 for moments of rank up to |K| = 4 in the

2-matrix Gaussian+YM model. They correspond to the non-anomalous linear vector field

T = L2
1 − L1

2.

TG1 = −G2 = 0; TG2 = G1 = 0; TG11 = −G21 − G12 = −2G12 = 0 ⇒ G12 = 0;

TG12 = G11 − G22 = 0 ⇒ G11 = G22; TG22 = 2G12 = 0 ⇒ G12 = 0;

TG111 = −3G112 = 0 ⇒ G112 = 0; TG112 = G111 − 2G122 = 0 ⇒ G111 = 2G122 = 0;

TG122 = 2G112 − G222 = 0 ⇒ G222 = 2G211 = 0; TG222 = 3G122 ⇒ G122 = 0;

TG1111 = −4G1112 = 0; TG1112 =G1111−2G1122−G1212 = 0 ⇒ G1111 = 2G1122+G1212;

TG1122 = −2G1222 + 2G1112 = 0 ⇒ G1112 = G1222; TG1212 = 2G1112 − 2G2221 = 0;

TG1222 = 2G1122 + G1212 − G2222 = 0; and TG2222 = 4G1222 = 0. (B.1)
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C. Is there a model for which Ward identities determine all GI?

Are there any non-trivial multi-matrix models where the WI are sufficiently numerous to

determine all (or a maximal set of) correlations without using the LE? We seek models

with a very large family of non-anomalous symmetries. Trying to answer the corresponding

question in two dimensional quantum field theory has proven very fruitful, as evidenced by

the progress in 2d conformal field theory. The latter are so symmetrical that a maximal

family of correlations can be determined by milking conformal invariance. Here we make an

elementary observation. The WI LvGK = 0 are a system of homogeneous linear equations.

So they are either underdetermined (if the determinant of the system vanishes) or admit

only the trivial solution GK = 0, ∀K. Though the WI can give us much information

on correlations, they cannot determine all of them except in the trivial case where they

are all zero. For example in a 2-matrix model, if we consider an extreme (and probably

unrealistic) case where all measure preserving vector fields are also action preserving,30

then it follows that all correlations of rank up to 4 vanish. This leaves open the question

of identifying non-trivial models with a maximal family of non-anomalous symmetries, i.e.

the ones for which the WI are most useful.

D. Cyclically symmetric tensors of rank n

The real dimension of the space of cyclic hermitian tensors Gi1···in on a vector space V of

dimension Λ (i.e. 1 ≤ i1, · · · , in ≤ Λ) is

c(n,Λ) =
1

n

∑

d|n

φ(d)Λn/d (D.1)

where φ(d) is Euler’s totient phi-function31 and the sum is over all divisors of n. c(n,Λ)

is the number of independent correlations of rank-n in a Λ matrix model. We thank the

mathematician Jean Yves Thibon of Université de Marne-la-Vallée, France for sharing this

formula with us. This answers a question posed in appendix A of ref. [20]. It comes from

the character of GL(V )

1

n

∑

d|n

φ(d) p
n/d
d (ξ) where pd(ξ) =

Λ
∑

i=1

ξd
i is the power sum symmetric function.(D.2)
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